Thema: Data Architecture
- Dienstag
11.06. - Mittwoch
12.06. - Donnerstag
13.06.
Stellen Sie sich vor, Sie haben in einem Großunternehmen als Daten-Architekt einer BI-Initiative mit ca. 160 Daten-Enthusiasten aus zentraler IT, Business Units und Zentralabteilungen die Aufgabe, die Architektur zu gestalten. Ist das wie einen Sack Flöhe zu hüten? Wie prägt ein 'people first'-Ansatz die Architekturarbeit? Und welchen Beitrag leisten aktuelle technische und organisatorische Ansätze wie Cloud, Data Marketplaces oder Data Mesh dabei?
Zielpublikum: Data Engineer, Project Leader,…
Real-world experience navigating a modern data architecture landscape. Thomas Mager will reflect on the initial motivations that sparked this journey, the structure of his contemporary data architecture, the value he could generate, and the obstacles he faced along the way. Additionally, he will offer valuable insights into his current and future endeavors, incl. leveraging SaaS, advancing AI initiatives, and rapidly developing new regulatory reports, all facilitated by the robust framework of…
Die ANDREAS STIHL AG & Co. KG befindet sich im Prozess der Digitalisierung. Als ein Kernelement wurde die Data Analytics Platform als Basis für die Umsetzung zahlreicher unterschiedlicher Anwendungsfälle verschiedener Fachbereiche vor mehr als zwei Jahren entworfen und realisiert. Die Plattform ist nach dem Prinzip der Data Mesh Architektur konzipiert. In unserem Vortrag möchten wir wichtige Erfahrungen teilen und auch einen Ausblick auf eine mögliche zukünftige Weiterentwicklung geben.
Zielpubl…
This session looks at how adoption of open table formats by data warehouse database management vendors and advances in SQL are making it possible to merge siloed analytical systems into a new federated data architecture supporting multiple analytical workloads.
Target Audience: Data architect, enterprise architect, CDO, data engineer
Prerequisites: Basic understanding of data architecture & databases
Level: Advanced
Extended Abstract:
In the last 12-18 months we have seen many different…
Bei Unternehmen, wie Swiss Life, die nicht aus einem datenbasierten Geschäftsmodell entstanden sind, hat die Auswertungsmöglichkeit von Daten zugenommen. Im Swiss Life EKV-Bereich hat dies zu vielen einzelnen Lösungen in der Datenlandschaft geführt. Um den Umgang mit Daten zu harmonisieren, wurden Zielbilder für eine moderne Datenorganisation und -architektur entwickelt, die nun implementiert werden. In diesem Vortrag erfahren Sie mehr über die Datenstrategie sowie die Erfolge und…
Im Vortrag wird die praktische Umsetzung einer Architektur auf Basis des modern Technology Stack (Einsatz von: DBT, Databricks, Dagster) im Kontext der Automobilindustrie gezeigt. Hierbei wird besonderer Fokus auf ein modernes Orchestrationswerkzeug gelegt, welches am Markt noch nicht so bekannt ist. Es wird auch übergreifend auf den Gesamtkontext eines Enterprise-Unternehmens hinsichtlich Data Governance, Data Security und Data Mesh sowie die Nutzung mehrerer Cloud-Hyperscaler eingegangen.
Ziel…
Data Mesh is a decentralized approach to enterprise data management. A Data Mesh consists of Data Products, which can be composed to form higher-order Data Products. In order for a Data Mesh to scale, this composition needs to be safe and efficient, which calls for automated testing. In the Microservices architecture, scalably testing the interaction between services is sometimes achieved by an approach called Consumer-Driven Contract Testing. This session explores how this approach can be…
Das ESG-Reporting adressiert in wesentlichen Teilen das Risikomanagement der Geschäftstätigkeit und die Nachhaltigkeit im Sinne einer dauerhaften und schonenden Nutzung der eingesetzten Ressourcen. Dabei zeigt sich jedoch in aktuellen Projekten, dass diese Schwerpunkte beim Aufsetzen eines ESG-Berichtswesens selbst zum Teil nicht berücksichtigt werden, sodass Individuallösungen oder Insellösungen entstehen, um schnell den gesetzlichen Anforderungen gerecht zu werden. ONTRAS zeigt, dass…
Data Transparency is a basic need of every data worker. It is crucial to find the right data in a limited amount of time to keep the time-to-market of data and analytical products short. However, documenting and classifying data manually can be cumbersome due to the vast amount of data. In this session, we present the approach MediaMarktSaturn has taken to use LLMs and other AI models in combination with a data catalog to establish a high level of data transparency in a semi-automated way.
Targe…
Supporting analytics and data science in an enterprise involves more than installing open source or using cloud services. Too often the focus is on technology when it should be on data. The goal is to build multi-purpose infrastructure that can support both past uses and new requirements. This session discusses architecture principles, design assumptions, and the data architecture and data governance needed to build good infrastructure.
Target Audience: BI and analytics leaders and managers;…
About 15 years ago, the finance sector pioneered data and analytics with developments like central Data Warehousing solutions and the establishment of BICC organizations. Recently, innovation has shifted towards public cloud and industries like automotive, significantly transforming the landscape. The finance sector, encountering similar challenges, is actively navigating the transition to the cloud. This presentation aims to highlight industry shifts in data management, addressing challenges…
Auch für die weltweit tätige Helm AG gewinnt der moderne Umgang mit Daten zunehmend an Bedeutung. Der Vortrag beschreibt, wie das Unternehmen Daten als wesentliche Informationsquelle und als Basis für Entscheidungen etabliert und sichergestellt wird, dass alle Nutzenden die notwendigen Informationen zur richtigen Zeit erhalten. Die Herausforderungen bestehen dabei vielmehr darin, moderne Arbeitsweisen in Bezug auf Daten einzuführen. Technisch wurde bei der Umsetzung auf moderne, automatisierte…
Babymarkt.de wollte sich noch stärker als bisher auf den Kunden fokussieren und brauchte dafür eine entsprechende Datengrundlage. Ein Audit zeigte die Schwächen der historisch gewachsenen existierenden Dateninfrastruktur auf. Ausgehend von den erfolgversprechendsten Use Cases wurde daher eine neue Best-of-Breed-Datenplattform in der Cloud konzipiert und implementiert. In diesem Vortrag stellen wir die gemachten Erfahrungen vor und geben Tipps für Unternehmen, die sich in einer ähnlichen…
Über zwei Jahre hat die Corona-Pandemie die Kassenärztliche Vereinigung Westfalen-Lippe (KVWL) vor gewaltige Herausforderungen gestellt. Quasi über Nacht mussten Impfzentren für Millionen von Impfungen aufgebaut und betrieben werden. Auch das DWH-Team war von Anfang an involviert und musste täglich auf neue Anforderungen reagieren. Über Monate war das Impf-Geschehen im Mittelpunkt der Öffentlichkeit. Dieser Vortrag zeigt, welche Maßnahmen geholfen haben, um dem immensen und sich immer wieder…
In einer Case Study wird gezeigt, wie die Schweizer Biomed AG mit Yotilla, einer Lösung mit einem neuartigen DWH-Automatisierungsansatz, die DWH-Entwicklung trotz eingeschränkt verfügbarer Ressourcen ermöglicht und beschleunigt hat. Der neue Ansatz automatisiert basierend auf einem fachlich orientierten Conceptual Model die logische und physische Data-Vault-Datenmodellierung, sodass das DWH ohne Data-Vault-Know-how erstellt und genutzt werden kann. Im Vortrag werden die Herausforderungen und der…
Die HAAS Mediengruppe reagiert mit einer Diversifizierung in digitale Dienstleistungen auf die zunehmende Relevanz des Digitalmarktes. Da der Umgang und die Interpretation von Daten in Zukunft immer bedeutsamer wird, passt sich HAAS den Gegebenheiten an und optimiert ihre Datenlandschaft mit Hilfe von The Data Institute.
Dieser Vortrag zeigt, wie die Aufnahme des Status quo in Sachen Datenlandschaft hilft, den Weg für die Modernisierung der eigenen Dateninfrastruktur in einer komplexen…
SAP hat eine Architekturmethode entwickelt, um effizient Mehrwerte aus Daten zu generieren. Durch ein strukturiertes Vorgehen werden auf Basis datenzentrischer Anwendungsfälle zielgerichtete Lösungsarchitekturen entwickelt. Wir geben einen Überblick über das Vorgehensmodell, wichtige Werkzeuge und Artefakte und zeigen die Anwendung der Methode an einem konkreten Kundenbeispiel.
Zielpublikum: Enterprise/Data Architects, Projektleiter/Berater/Entscheider im Umfeld von Data Management & Analytics
V…
VR-NetWorld's 'Business Intelligence Platform'-Projekt setzte auf die Microsoft Azure Cloud, um entscheidende betriebliche Herausforderungen zu meistern. Die Einführung eines fortschrittlichen Data Warehouses und Power-BI-Tools transformierte die Datenanalyse und -verwaltung. Unter 100 Tagen implementiert, führte die Lösung zu erheblichen Effizienzsteigerungen und Kosteneinsparungen, unterstützt durch die Anpassungsfähigkeit von Azure. Dieses Vorhaben unterstreicht den Mehrwert der…
Die Scherdel GmbH setzt international Maßstäbe bei der Verarbeitung von metallischem Draht und Band. Das bestehende DWH auf Basis MSSQL, welches über 15 Jahre von verschiedenen Entwicklern aufgebaut wurde, wird Schritt für Schritt modernisiert und in der Azure Cloud aufgesetzt. Im ersten Schritt wurden die Grundlagen geschaffen und ein erster Cube umgesetzt. Als Lösung setzen wir auf MS Fabric, obwohl es erst mit Projektbeginn allgemein verfügbar war. Wir stellen das Projekt vor und berichten…
Um Nachhaltigkeit in Unternehmensentscheidungen zu berücksichtigen und gesetzlichen Verpflichtungen der Nachhaltigkeitsberichterstattung (CSRD) nachzukommen, müssen BI- und Data-Management neue Informationsbedarfe und funktionale Anforderungen bedienen. In dieser Session diskutieren wir ESG Reporting & Performance Management aus IT- und Data-Management-Sicht:
- ESG Funktionale Anforderungen und Datenmodelle
- ESG Lösungsarchitekturen: Datengenerierung, Datenplattform, Frontend
- ESG Softwareauswahl …
Zusammen mit der GWQ ServicePlus AG zeigen wir, wie durch eine All-In-One-Open-Source-Lösung auf Basis von Kubernetes datenschutzkonforme und sichere Anwendungen nach neusten Standards entwickelt werden können.
Zielpublikum: Data Engineers, Architects, Decision Makers
Voraussetzungen: Erfahrung in Data Engineering, Cloud Native
Schwierigkeitsgrad: Advanced
Extended Abstract:
Viele Unternehmen stehen vor der Frage: Make (offene Lösung auf Open-Source-Basis) or Buy (anpassbare Insellösung)? Gerade…
Explore the future of MLOps as we delve into building Azure ML pipelines using OOP. Discover how a generic and reusable MLOps pipeline streamlines new use case initiation. We utilize MLflow for managing the ML lifecycle and model deployments. We leverage OOP and dependency injection to build an MLOps framework, eliminating all the boilerplate and making it easy for our customers to start new use cases. Developers can reuse, inject, or utilize AutoML for training modules. This solution is an…
Viele Organisationen kennen das Problem: SAP-Daten sind für viele Use-Cases interessant, aber der Zugriff ist kompliziert oder sehr teuer. Unsere Lösung: Eine Spark Data Source für SAP, die ohne zusätzliche Software oder Module direkt von Databricks auf SAP-Systeme zugreift und damit native Weiterverarbeitung in der Spark-Welt erlaubt. Am Beispiel des Data-Stacks der GEMA zeigen wir, wie die SAP-Integration unsere Data-Mesh-Plattform im Self-Service beflügelt und welche Use-Cases wir damit…
Bei der Entwicklung von IT-Systemen, so auch Data Warehouses und analytische Applikationen, kommt es zu unerwünschten Nebeneffekten. Neben Fehlernwerden Abweichungen von Architektur-Vorgaben oder Design Patterns als technische Schuld (Technical debt) bezeichnet. Im Gegensatz zu Fehlern läuft das System zwar korrekt, jedoch hat es Auswirkungen auf die Weiterentwicklung und den Betrieb (Kosten, Zeit, Incidents etc.).
Typische Gruppen von technical Debts werden kurz erklärt, was deren Auswirkungen…
Im Zeitalter von Big Data hat sich Data-Engineering zu einem Schlüsselbereich entwickelt, um das Potenzial umfangreicher Datenschätze zu nutzen. Doch was braucht es, um Datenverarbeitung, -transformation und -bereitstellung zu optimieren? Dieser Vortrag beleuchtet anhand einer beispielhaften Architektur die Bedeutung von Software-Engineering-Kenntnissen für Data-Engineers, und diskutiert spezifische Herausforderungen wie Datenintegrität, Prüfung von Data-Pipelines und die Balance zwischen…