Die im Konferenzprogramm der TDWI München 2024 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Thema: Tools
- Dienstag
11.06. - Mittwoch
12.06.
This session looks at how adoption of open table formats by data warehouse database management vendors and advances in SQL are making it possible to merge siloed analytical systems into a new federated data architecture supporting multiple analytical workloads.
Target Audience: Data architect, enterprise architect, CDO, data engineer
Prerequisites: Basic understanding of data architecture & databases
Level: Advanced
Extended Abstract:
In the last 12-18 months we have seen many different architectures emerge from many different vendors who claim to be offering 'the modern data architecture solution' for the data-driven enterprise. These range from streaming data platforms to data lakes, to cloud data warehouses supporting structured, semi-structured and unstructured data, cloud data warehouses supporting external tables and federated query processing, lakehouses, data fabric, and federated query platforms offering virtual views of data and virtual data products on data in data lakes and lakehouses. In addition, all of these vendor architectures are claiming to support the building of data products in a data mesh. It's not surprising therefore, that customers are confused as to which option to choose.
However, in 2023, key changes have emerged including much broader support for open table formats such as Apache Iceberg, Apache Hudi and Delta Lake in many other vendor data platforms. In addition, we have seen significant new milestones in extending the ISO SQL Standard to support new kinds of analytics in general purpose SQL. Also, AI has also advanced to work across any type of data.
The key question is what does this all mean for data management? What is the impact of this on analytical data platforms and what does it mean for customers? What opportunities does this evolution open up for tools vendors whose data foundation is reliant on other vendor database management systems and data platforms? This session looks at this evolution and helps vendors realise the potential of what's now possible and how they can exploit it for competitive advantage.
- The demand for data and AI
- The need for a data foundation to underpin data and AI initiatives
- The emergence of data mesh and data products
- The challenge of a distributed data estate
- Data fabric and how can they help build data products
- Data architecture options for building data products
- The impact of open table formats and query language extensions on architecture modernisation
- Is the convergence of analytical workloads possible?
Mike Ferguson is Managing Director of Intelligent Business Strategies and Chairman of Big Data LDN. An independent analyst and consultant, with over 40 years of IT experience, he specialises in data management and analytics, working at board, senior IT and detailed technical IT levels on data management and analytics. He teaches, consults and presents around the globe.
Eine Data Fabric soll den Zugriff auf die verteilten Daten im Unternehmen vereinfachen oder überhaupt erst ermöglichen. Die Vorstellungen, wie eine Data Fabric aussieht und was Anbieter unter dem Label verkaufen, klaffen oft weit auseinander.
Wie sind aktuelle Konzepte und Angebote am Markt einzuordnen? Welche Wege gibt es, die Data Fabric und die damit verbundenen Versprechen für mich Realität werden zu lassen? Der Vortrag soll ein Verständnis über die Bedeutung und eine Einordnung von Lösungen und Konzepten ermöglichen.
Zielpublikum: CDO, CIO, Verantwortliche Data & Analytics, Datenarchitekten, IT-Architekten
Voraussetzungen: Grundlegende Kenntnisse zu Datenarchitekturen und Datenmanagementkonzepten
Schwierigkeitsgrad: Advanced
Extended Abstract:
Real-time-, Business- oder Logical-Data-Fabric. Marktforschungsunternehmen und Technologieanbieter streiten sich über die Deutungshoheit der Data Fabric und arbeiten damit häufig an der Situation der Kunden vorbei. Was ist wirklich wichtig, welche Komponenten bringen mich wirklich weiter und wie wirken sich aktuelle Trends wie Data Mesh und LLMs auf das Konzept aus, um endlich die Herausforderungen eines modernen, analytischen Datenmanagements zu bewältigen.
Peter Baumann ist Principal Consultant im Bereich Data & Analytics bei der Infomotion. Er verfügt als Führungskraft, Berater und Projektleiter über rund 18 Jahre Erfahrung mit den verschiedensten Technologien und Anbietern. Seit seinem Einstieg bei Infomotion in 2021 als Berater für Data & Analytics Strategy unterstützt er seine Kunden, Konzepte und Vorgehensweisen zu entwickeln, um Technologien zur Nutzung von Daten wertschöpfend einzusetzen.
Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/peter-baumann/
Vortrag Teilen
Auch für die weltweit tätige Helm AG gewinnt der moderne Umgang mit Daten zunehmend an Bedeutung. Der Vortrag beschreibt, wie das Unternehmen Daten als wesentliche Informationsquelle und als Basis für Entscheidungen etabliert und sichergestellt wird, dass alle Nutzenden die notwendigen Informationen zur richtigen Zeit erhalten. Die Herausforderungen bestehen dabei vielmehr darin, moderne Arbeitsweisen in Bezug auf Daten einzuführen. Technisch wurde bei der Umsetzung auf moderne, automatisierte und skalierende Komponenten gesetzt.
Zielpublikum: ArchitektInnen, Geschäftsführung, C-Level, Abteilungs-/Bereichsleitung, Product Owner, BICC-Leitung
Voraussetzungen: keine
Schwierigkeitsgrad: Advanced
Extended Abstract:
Es begann mit der Vorstellung vier unterschiedlicher BI-Tools. Die HELM AG, ein traditionsreiches Hamburger Familienunternehmen mit über 120-jähriger Geschichte, gehört heute zu den weltweit größten Chemie-Marketingunternehmen und sichert mit mehr als 100 Niederlassungen, Verkaufsbüros und Beteiligungen in über 30 Ländern durch spezifische regionale Kenntnis den Zugang zu den wichtigsten Märkten. Kein Wunder also, dass ein zeitgemäßer Umgang mit den Daten des Unternehmens eine Voraussetzung für den Erfolg der HELM AG darstellt. Dieser war jedoch mit den aktuellen Werkzeugen nur noch schwer in Einklang zu bringen. Zuerst wurde das Problem bei der aktuellen BI-Lösung gesucht., aber während der Vorstellung der möglichen Kandidaten identifizierte die Helm AG zusammen mit dem Data Strategy & Analytics-Experten areto die tatsächlichen Probleme, und es wurde allen Beteiligten schnell klar, dass die Herausforderungen nur zu bewältigen waren, wenn die Helm AG das Thema Analytics ganzheitlich betrachten und umsetzen würde Im Folgenden hielt areto eine maßgeschneiderte Workshopserie mit unterschiedlichen Beteiligungen seitens der Helm AG ab.
Mittels Data Strategy Workshops wurde die Vision und die Erwartungen des Unternehmens an einen modernen, analytischen Umgang mit Daten geklärt und ein grundsätzlicher Fahrplan für die Zukunft festgelegt. Die Umsetzung sollte Use Case-bezogen erfolgen, und so wurde mit dem Bereich “Chemicals” in weiteren Workshops über die relevanten Use Cases gesprochen, die dann als Backlog dokumentiert wurden. Gleichzeitig entwickelte areto auf Basis der identifizierten Anforderungen eine Architekturempfehlung, die dann intensiv diskutiert und letztendlich so umgesetzt wurde. Auf in die Zukunft mit dem Projekt “Flux”! Mit “Flux” schafft die Helm AG die Basis für die zentrale Daten- und Analytics-Plattform, die nun sukzessiv auf alle Bereiche des Unternehmens ausgeweitet wird. Das allseits präsente Thema “Data Mesh” wird in diesem Kontext zwar diskutiert, aber in einer für die Helm AG angepassten Variante eingesetzt. Die Umsetzung des Projektes “Flux” erfolgt in einzelnen Abschnitten (“Waves”), die jeweils separat geschätzt wurden. Die technische Umsetzung erfolgte agil an Scrum angelehnt. SAP und Salesforce sind und waren die wichtigsten Datenquellen. SAP befand sich auf dem kritischen Pfad des Projektes, da wegen des parallelen Rollouts von SAP auf andere Regionen wenig internes Personal unterstützen konnte. Mit Microsoft Azure und Snowflake wurden leistungsfähige und skalierende Komponenten gewählt. Die Automatisierung der Datenbewirtschaftung erfolgt über die Azure Data Factory (inkl. der SAP-Anbindung) und den Datavault Builder. Analysen und Dashboards werden über PowerBI implementiert.
Hallo liebe Community,
Ich denke und handle durch und durch Business Intelligence. Ich brenne für neue BI und Datenlösungen, die es einfach jeder und jedem ermöglicht, ihre und seine Arbeit Tag für Tag besser zu machen. Das lernte ich während meiner Beratungstätigkeit kennen und baute es danach weiter aus, sodass ich federführend an dem Aufbau der Datenplattform und der datengetriebenen Kultur bei hagebau Connect beteiligt war. Beim Global Player HELM AG startete ich mit dem Auftrag eine komplett neue globale Datenlandschaft aufzubauen, die für jedmögliche BI- und AI-Initiative der Zukunft gewappnet sein soll. Als Product Owner vereine ich die Anforderungen vom Business und entwickle zusammen mit dem Corporate BI Team die technische Plattform und vor allem auch die datengetriebene Kultur.
Data-Driven Self-Service sollte die Gegenwart sein und ist unabdingbar in der Zukunft.
Think BI(g)
Till Sander weist eine über 20-jährige Erfahrung als Manager und Lösungsarchitekt bei Technologie- und Consulting-Unternehmen auf. Als Chief Technical Officer (CTO) bringt er unter anderem seine langjährige Expertise in der Konzeption und dem Aufbau von Data-Analytics-Lösungen in die Geschäftsführung ein. Auf dieser Basis treibt er den Auf- und Ausbau der areto consulting gmbh, die Evaluierung neuer Softwareprodukte sowie die Weiterentwicklung bestehender Service Angebote und Beratungsleistungen weiter voran.
Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/till-sander/