Hinweis: Die aktuelle TDWI-Konferenz findest Du hier!

PROGRAMM

Die im Konferenzprogramm der TDWI München 2023 angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen kannst du dir deinen eigenen Zeitplan zusammenstellen. Du kannst diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.

 

Hier kannst Du die Programmübersicht der TDWI München 2023 mit einem Klick als PDF herunterladen.

Optimierter Workflow mit Visual Studio Code

Der Modern Data Stack ist in aller Munde. Aber nicht nur der Modern Data Stack, sondern auch für die Zusammenarbeit im Analytics Engineering-Team ergeben sich dadurch neue Möglichkeiten, und darüber hinaus kann die Zusammenarbeit mit dem Fachbereich auf neue Beine gestellt werden. Aber welche Tools haben sich bewährt und was sind die Einsatzzwecke? Konzentriert wird sich in dieser Session auf Visual Studio Code und sinnvolle Erweiterungen für eine optimierte Entwicklerumgebung.

Zielpublikum: Data Engineers, Analytics Engineers und DWH-Entwickler:innen
Voraussetzungen: Basiswissen dbt/Analytics Engineering
Schwierigkeitsgrad: Fortgeschritten

Extended Abstract:
In diesem Vortrag werden Sie einen Einblick in die Welt des Analytics Engineering bekommen und erfahren, wie Sie Ihren Workflow optimieren und effektiver zusammenarbeiten können. Ein wichtiger Bestandteil dabei ist die Zusammenarbeit im Team. Um einen reibungslosen Workflow zu gewährleisten, ist es entscheidend, die richtigen Tools und Arbeitsumgebungen zu nutzen. Visual Studio Code bietet hierfür eine Vielzahl an Möglichkeiten. Durch die Verwendung von empfohlenen Erweiterungen kann das Analytics Engineering-Team noch effizienter zusammenarbeiten.

Unter anderem SqlDBM, dbt, Snowflake, Jira, Confluence und ChatGPT sind nun die Stars auf dem Spielfeld.
Welche Vorteile ergeben sich aus der Nutzung und Einbindung moderner Werkzeuge in die VS Code-Entwicklungsumgebung?
Können diese Werkzeuge die Produktivität steigern und den Entwicklungsprozess effizienter machen?

Darauf möchten wir in dieser Session eingehen und Antworten unter anderem anhand eines Praxisbeispiels liefern.
Neben dem unschätzbaren Methodenwissen, welches beim Analytics Engineering nicht an Bedeutung verloren hat, kommen jetzt echte Innovationen.
Wir laden alle Interessierten ein, sich unsere Ansicht und Erfahrungen anzuhören und mitzudiskutieren, wie man das Potenzial des Analytics Engineering-Teams am besten ausschöpfen kann.
 

Bevor er bei Aquila angestellt wurde, hat Oliver Cramer mehr als 20 Jahre Kunden aus verschiedenen Branchen, wie Automotive und Versicherung in BI-Projekten beraten. Seine Schwerpunkte sind Datenbankarchitektur, Datawarehouse-Architektur, Data Vault (2.0), OLAP-Berichte, Datenintegration, Geschäftsprozessanalyse sowie Konzeption von DWH-Projekten. Er ist Experte für Data Vault, schichtenbasierte DWH-Architekturen sowie temporale Modellierung. Doch am Ende geht es nicht ohne qualitätsgesicherte Daten, darum jetzt der Schwenk zum Daten-Management.

Florian Dindorf ist Berater bei b.telligent. Er arbeitet seit 7 Jahren im BI-Bereich. Erst als dualer Student und Entwickler in einem Handelsunternehmen und anschließend als Berater. Der Fokus liegt dabei im Backendbereich und im Data Engineering mit einer Passion für Open-Source-Tools.

Oliver Cramer, Florian Dindorf
15:20 - 16:05
Vortrag: Di 2.4

Vortrag Teilen