Hinweis: Die aktuelle TDWI-Konferenz findest Du hier!

PROGRAMM

Die im Konferenzprogramm der TDWI München 2023 angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen kannst du dir deinen eigenen Zeitplan zusammenstellen. Du kannst diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.

 

Hier kannst Du die Programmübersicht der TDWI München 2023 mit einem Klick als PDF herunterladen.

Why AI? Explainable AI (XAI)

Eine Möglichkeit, die Nachvollziehbarkeit der Entscheidungen von KI-Modellen zu erhöhen, ist Explainable AI (XAI). In unserem Vortrag geben wir eine Einführung in dieses sehr relevante und spannende Feld. Anhand eines Use-Cases zeigen wir die Wichtigkeit von XAI auf und gehen tiefer auf einige Methoden ein, die helfen können, die gestellten Anforderungen zu erfüllen. Zusätzlichen diskutieren wir den konkreten Nutzen, den XAI bringen kann, anhand einer Reihe von Beispielen aus der Praxis und geben einen Einblick, welche Bereiche besonders profitieren können.

Zielpublikum: Entscheider:innen, Data Scientists
Voraussetzungen: Grundsätzliche Kenntnis über Machine Learning-Anwendungen
Schwierigkeitsgrad: Einsteiger

Extended Abstract:
Moderne KI-Algorithmen werden zunehmend komplexer und die getroffenen Vorhersagen können immer schwer nachvollzogen werden. Dies erschwert den Einsatz von KI im Allgemeinen und besonders in hochregulierten Bereichen, in denen Nachvollziehbarkeit eine große Rolle spielt (z. B. Finance und Insurance). Aktuelle Gesetzesvorhaben wie der European AI-Act verstärken dieses Problem zusätzlich, da Nachvollziehbarkeit mehr und mehr zu einer verpflichtenden Eigenschaft von KI-Modellen in vielen Bereichen wird. Eine Möglichkeit, die Nachvollziehbarkeit der Entscheidungen von KI-Modellen zu erhöhen, ist Explainable AI (XAI). In unserem Vortrag geben wir eine Einführung in dieses sehr relevante und spannende Feld. Anhand eines Use-Cases zeigen wir die Wichtigkeit von XAI auf und gehen tiefer auf einige Methoden ein, die helfen können, die gestellten Anforderungen zu erfüllen. Zusätzlichen diskutieren wir den konkreten Nutzen, den XAI bringen kann, anhand einer Reihe von Beispielen aus der Praxis und geben einen Einblick, welche Bereiche besonders profitieren können.
 

Andreas Gillhuber ist seit 2017 bei der Alexander Thamm GmbH tätig und verantwortet als Managing Director und Co-CEO das operative Geschäft in den über 300 Kundenprojekten (Delivery). Er verfügt über langjährige Expertise aus komplexen IT- und Transformationsprogrammen, Restrukturierungen, Digitalisierungs- sowie Data Strategy / Engineering-Projekten. Andreas Gillhuber hat über 25 Jahre Industrie- und Konzernerfahrung und war zuvor in Geschäftsleitungs- und IT-Management-Positionen bei BMW, RWE, Nokia Siemens Networks und Siemens. Nach seinem Studium der Elektrotechnik und Informationstechnik, das er als Dipl.-Ing. an der TU München abschloss, startete er in Vertrieb und Marketing bei der IBM in USA und Deutschland.
Er ist außerdem Buchautor und Vorstandsmitglied der German Data Science Society (GDS) e.V.
 

Johannes Nagele hat einen wissenschaftlichen Hintergrund in Biophysik und Hirnforschung und verfügt über mehr als 10 Jahre Erfahrung in Statistik, Datenwissenschaft, maschinellem Lernen und künstlicher Intelligenz. Er kombiniert seine langjährigen praktischen Erfahrungen mit konzeptionellen Ansätzen zur Analyse komplexer Systeme. 
Bei [at] leitet er den Exzellenzcluster zu erklärbarer KI.
 

Luca Bruder hat einen wissenschaftlichen Hintergrund in kognitiven Neurowissenschaften und kombiniert diesen mit Fachwissen in den Bereichen Reinforcement Learning und Bayes'sche Modellierung. 
Bei [at] leitet er ein großes Forschungsprojekt über erklärbare KI im Bereich autonomes Fahren und Computer Vision.
 

Andreas Gillhuber, Johannes Nagele, Luca Bruder
17:30 - 18:30
Vortrag: Di 6.6

Vortrag Teilen