
Die im Konferenzprogramm der TDWI München 2022 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Hier können Sie die Programmübersicht der TDWI München 2022 mit einem Klick als PDF herunterladen.
Thema: Agile
- Montag
20.06. - Mittwoch
22.06.
KI hat einen disruptiven Einfluss auf die Wertkette der Versicherung. Data-driven Insurance steht für eine KI-Einführung zu Mehrwert mit Strategie. Neue Portfolios, Prinzipien, Standards, Jobs und Prozesse sind die Folge. Diese werden vorgestellt.
Zielpublikum: Führungskräfte, Trainer, Erklärer und Förderer
Voraussetzungen: KI-Agilität, Einführungs- und Projektmanagement
Schwierigkeitsgrad: Experte
Extended Abstract:
Damit die Einführung der Data-driven Insurance sich beschleunigt, sind die…
Das Thema KI ist in aller Munde. Fragt man in Unternehmen aber, wie bestehende Datenschutzanforderungen, Richtlinien der EU und die Mitbestimmung des Betriebsrates sichergestellt werden, so gibt es hier selten Antworten. Gerade die Einbeziehung dieser Stakeholder ist aber keine 'lästige' Pflicht, sondern ein kritischer Erfolgsfaktor.
Im Vortrag wird das Vorgehen der Zurich Deutschland vorgestellt und aufgezeigt, wie wir gemeinsam an einer für Mitarbeiter und Kunden fairen KI arbeiten.
Zielpublik…
Agile ist doch gleichbedeutend mit Chaos und Planlosigkeit - wie soll mir das bitte bei meinem Business Intelligence-Vorhaben weiterhelfen?' Es ist ein gängiger Irrglaube, dass Agile gleichbedeutend ist mit schlechter oder keiner Planung. Wir laden dich deshalb ein zu einem interaktiven Stadtrundgang durch „Agile BI City”: Du erfährst, was du für dein agil durchgeführtes BI-Projekt beachten musst. Du lernst mittels praktischer Aufgaben, wie du frühzeitig und kontinuierlich Mehrwerte für deine…
Data Analysts and Data Scientists invest an immense amount of time into optimizing models and interpreting data, all in the quest to promote better business decision making and more efficient product development. We oftentimes however fail to take a step back and answer the overarching question: Why does the user show the observed behavior pattern? Why does a certain variable improve the accuracy of our prediction model? Despite all the advances we have made in analytics, even predictive…