Hinweis: Die aktuelle TDWI-Konferenz finden Sie hier!

PROGRAMM

Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.

Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download

Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.

Track: Academic Track

Nach Tracks filtern
Alle ausklappen
  • Mittwoch
    23.06.
09:00 - 09:40
Mi 5.1
GAIA-X - Eine vernetzte Dateninfrastruktur als Wiege eines vitalen, europäischen Ökosystems

Das „Projekt GAIA-X“ wird in den Veröffentlichungen des Bundesministeriums für Bildung und Forschung als Wiege eines offenen digitalen Ökosystems gesehen, in dem Daten sicher und vertrauensvoll verfügbar gemacht, zusammengeführt und geteilt werden können. Ziel ist es, gemeinsam mit weiteren europäischen Ländern für Europa, seine Staaten, seine Unternehmen und seine Bürgerinnen und Bürger die nächste Generation einer vernetzten Dateninfrastruktur zu schaffen, die den höchsten Ansprüchen an…

Mehr lesen
Sebastian Olbrich
09:50 - 10:30
Mi 5.2
Konzept einer Anwendung zur Ad-hoc-Sternschema-Generierung

Dimensionale Datenstrukturen sind besonders für die Anfertigung von Ad-hoc-Analysen geeignet, da diese der natürlichen Sicht entsprechen, die die Fachanwender auf ihren Geschäftsbereich haben. Der Aufbau dieser Strukturen ist allerdings aufwändig, wodurch diese nur für stabile Datenstrukturen geeignet sind. Diese sind allerdings gerade im Kontext von Self-Service-Analysen meist nicht gegeben. In diesem Beitrag wird ein Konzept beschrieben, durch das eine flache Tabelle (semi-)automatisch in ein…

Mehr lesen
Malte Constantinescu, Michael Schulz, Kerstin Schneider
11:00 - 12:10
Mi 5.3
Ein Vorgehensmodell für KI-Projekte aus Business-Perspektive

Das vorliegende Forschungsvorhaben fokussiert die Unterstützung von Business-Anwendern bei der Identifikation, Modellierung und Umsetzung von KI-Projekten. Hierfür wurde ein Vorgehensmodell entwickelt, welches Business-Anwender vom Scouting für geeignete Anwendungsfälle, über das high-level Design und die Konfiguration der KI-basierten Applikation bis zur Umsetzung des Projektes begleiten. Das Modell besteht aus dem KI-Periodensystem, Der KI-Applikations-Taxonomie sowie einem Artefakt zur…

Mehr lesen
Identifikation neuer Angriffsmuster im Netzwerkverkehr: Entwicklung einer Intrusion-Detection-Architektur basierend auf ART-Netzwerken

70% aller deutschen Unternehmen und Institutionen sind von Cyberkriminalität betroffen und die Bedrohungslage sowie die Schäden durch Cyberkriminalität steigen stetig weiter an (BSI, 2018, S. 15; BKA, 2017). Um sich dieser Bedrohung zu stellen, kommen immer häufiger auch Intrusion-Detection-Systeme zum Einsatz. Künstliche Neuronale Netzwerke der Adaptiven Resonanztheorie sind dabei in der Lage eine grundlegende Frage zu lösen: Wie kann ein solches System automatisch neuartige Angriffe erkennen…

Mehr lesen
Christian Dietzmann
Tom Kühne
Vortrag: Mi 5.3-1
Vortrag: Mi 5.3-2
14:30 - 15:40
Mi 5.4
Open Economy of Things (EoT) im Kontext der Digitalisierung

Durch die Integration digitaler Zahlungsströme in ein IoT-System werden Interaktion zwischen Objekten um eine wirtschaftliche Komponente erweitert. Dies schafft die Grundlage für ein digitales und offenes Wirtschaftssystem – die Economy of Things (EoT). Hierbei soll untersucht werden, welche Voraussetzungen eine EoT erfüllen muss, um einen Mehrwert in der Praxis zu stiften. Ziel der Arbeit ist es, ein Modell für die Gestaltung einer solchen EoT zu erstellen und zu evaluieren.

Mehr lesen
Bildbasierende Qualitätssicherung und Defekterkennung via Image Mining und Computer Vision

Systeme zur Defekterkennung und Qualitätssicherung in der Produktion verfolgen das Ziel, Ausschussraten zu minimieren und Qualitätsstandards einzuhalten. Die dadurch angestrebte Reduktion der Produktionskosten folgt dem übergeordneten Ziel, der Maximierung der Wertschöpfung. Zu diesem Zweck lassen sich bildbasierende- sowie analytische Methoden und Techniken kombinieren. Die Konzepte Computer Vision und Image Mining bilden hierbei die Grundlage, um aus Bilddaten einen Wissensgewinn im Hinblick…

Mehr lesen
Sven Kurrle
Sebastian Trinks
Vortrag: Mi 5.4-1
Vortrag: Mi 5.4-2
16:10 - 16:50
Mi 5.5
Designing Role-Specific Self-Service Business Intelligence & Analytics Systems in the Data Science Ecosystem
Sven Michalczyk
17:00 - 18:10
Mi 5.6
Panel: Business Intelligence & Analytics und KI – getrennte Welten?
Carsten Felden, Sebastian Olbrich, Henning Baars, Ralf Finger

Zurück