Hinweis: Die aktuelle TDWI-Konferenz finden Sie hier!

PROGRAMM

Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.

Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download

Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.

Ein Vorgehensmodell für KI-Projekte aus Business-Perspektive

Das vorliegende Forschungsvorhaben fokussiert die Unterstützung von Business-Anwendern bei der Identifikation, Modellierung und Umsetzung von KI-Projekten. Hierfür wurde ein Vorgehensmodell entwickelt, welches Business-Anwender vom Scouting für geeignete Anwendungsfälle, über das high-level Design und die Konfiguration der KI-basierten Applikation bis zur Umsetzung des Projektes begleiten. Das Modell besteht aus dem KI-Periodensystem, Der KI-Applikations-Taxonomie sowie einem Artefakt zur Umsetzung von KI-Projekten, welches sich derzeit in der Validierungsphase befindet. Das KI-Periodensystem erlaubt im ersten Schritt des Modells die Auswahl von KI-Funktionalitäten entlang eines Agenten-basierten Ansatzes und ermöglicht dem Anwender somit die Erstellung eines high-level Design. Da die Funktionalitäten jeweils mit den menschlichen Intelligenzformen hinterlegt sind, ermöglicht das Artefakt zusätzlich die Diskussion zu den organisatorischen Auswirkungen im unmittelbaren Umfeld der potenziellen KI-Applikation. Im zweiten Schritt des Vorgehensmodells wird das KI-basierte System ebenfalls entlang der Agenten-basierten Perspektive konfiguriert. Die Komponenten und Charakteristika der KI-Applikations-Taxonomie ermöglichen dem Anwender eine gezielte Konfiguration der Anwendung, welche anschliessend als Grundlage für die Spezifikation der Anforderungen an das jeweilige System genutzt werden können. Die Taxonomie eignet sich ausserdem zur strategischen Analyse von Konkurrenz-Applikationen oder zur Auswahl beim Einkauf KI-basierter Applikationen. Im dritten und letzten Schritt des Vorgehensmodells wird die Umsetzung des KI-Projektes entlang des Data Science-/CRISP-Prozesses inkl. in den jeweiligen Projektabschnitten beteiligten Rollen und Risiken dargestellt. Hierbei sollen Business-Anwender nicht nur bei der Orientierung innerhalb des Projektes unterstützt werden, sondern vor allem zur Kommunikation befähigt werden. Aufgrund dessen enthält das dritte Artefakt einen reichhaltigen Fundus an KI-Algorithmen, welche den jeweiligen Projektphasen zugeordnet und definiert sind. Somit erhält der Business-Anwender nicht nur einen Überblick über das gesamthafte Vorgehen zur Umsetzung des KI-Projektes, sondern wird befähigt, die KI-spezifische Terminologie zu verstehen und anzuwenden. Die zuvor genannten Artefakte wurden bzw. werden basierend auf dem Design Science Research-Ansatz in einem Konsortialforschungsprojekt sowie mittels Literaturanalysen, Umfragen und Fokusgruppen-Interviews entwickelt. Das Vorgehensmodell soll in seiner Gesamtheit einen Beitrag zur Umsetzbarkeit von KI-Projekten und zum KI-Verständnis für Business-Anwender leisten. Andererseits bieten die enthaltenen Artefakte Unterstützung bei der Analyse und Auswahl von KI-Systemen, Konfigurationen und Algorithmen und halten gemäss der Rückmeldungen von Experten grossen Mehrwert für die Praxis bereit, bei einigen Unternehmen befinden sich die Artefakte bereits im Einsatz. Ziel der Präsentation ist die kritische Diskussion der Zusammenhänge zwischen den einzelnen Artefakten sowie die Auseinandersetzung mit dem Modell zur Auswahl von KI-Algorithmen im vierten und letzten Schritt des Vorgehensmodells.

Christian Dietzmann
11:00 - 12:10
Vortrag: Mi 5.3-1

Vortrag Teilen

Identifikation neuer Angriffsmuster im Netzwerkverkehr: Entwicklung einer Intrusion-Detection-Architektur basierend auf ART-Netzwerken

70% aller deutschen Unternehmen und Institutionen sind von Cyberkriminalität betroffen und die Bedrohungslage sowie die Schäden durch Cyberkriminalität steigen stetig weiter an (BSI, 2018, S. 15; BKA, 2017). Um sich dieser Bedrohung zu stellen, kommen immer häufiger auch Intrusion-Detection-Systeme zum Einsatz. Künstliche Neuronale Netzwerke der Adaptiven Resonanztheorie sind dabei in der Lage eine grundlegende Frage zu lösen: Wie kann ein solches System automatisch neuartige Angriffe erkennen und in seine Wissensrepräsentation integrieren?

Bildungsweg
10/2017 – 01/2020 Studium Business Intelligence & Analytics (M.Sc.)
Technische Universität Chemnitz
10/2014 – 09/2017 Studium Wirtschaftsinformatik (B.Sc.)
Berufsakademie Dresden
08/2006 – 07/2014 Abitur (allgemeine Hochschulreife)
Gymnasium Dresden-Klotzsche Berufserfahrung
Seit 02/2020 TU Chemnitz – Professur Wirtschaftsinformatik II
Wissenschaftlicher Mitarbeiter
03/2018 – 09/2019 TU Chemnitz – Professur Wirtschaftsinformatik II
Wissenschaftliche Hilfskraft
  • Unterstützung Lehre, insb. Data Mining
  • Begleitung wissenschaftlicher Projekte
10/2014 – 09/2017 Sächsische Aufbaubank -Förderbank-Duales Studium
  • insb. Stabseinheit Compliance und Informationssicherheit
  • Begleitung Zertifizierung nach ISO 27001 auf Basis von IT-Grundschutz
  • Informationsrisikoanalyse
Tom Kühne
11:00 - 12:10
Vortrag: Mi 5.3-2

Vortrag Teilen