Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download
Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.
Dimensionale Datenstrukturen sind besonders für die Anfertigung von Ad-hoc-Analysen geeignet, da diese der natürlichen Sicht entsprechen, die die Fachanwender auf ihren Geschäftsbereich haben. Der Aufbau dieser Strukturen ist allerdings aufwändig, wodurch diese nur für stabile Datenstrukturen geeignet sind. Diese sind allerdings gerade im Kontext von Self-Service-Analysen meist nicht gegeben. In diesem Beitrag wird ein Konzept beschrieben, durch das eine flache Tabelle (semi-)automatisch in ein Sternschema transformiert werden kann.
Zielpublikum: Data Engineer, Data Analyst
Voraussetzungen: Grundkenntnisse in der dimensionalen Datenmodellierung
Schwierigkeitsgrad: Fortgeschritten
Extended Abstract:
Self-Service-Business-Intelligence-Anwendungen erlauben es Fachanwendern, eigenständig Berichte und Analysen zu erstellen, ohne selbst über ausgeprägte technische Kenntnisse zu verfügen. Eine der am häufigsten verwendeten Datenquellen sind hierbei Flat Files. Dies liegt darin begründet, dass flache Strukturen häufig für den Austausch und die Bereitstellung von Daten genutzt werden. Außerdem sind flache Strukturen leicht und ohne den Einsatz komplexer Softwareprodukte zu erzeugen, selbst wenn die Ursprungsdaten aus verschiedenen Quellen stammen. Als Grundlage für das Ad-hoc-Reporting sind flache Strukturen jedoch weniger geeignet, da sie aufgrund der hohen Anzahl an Attributen schnell unübersichtlich und komplex wirken können. Wesentlich geeigneter für das Erstellen von Analysen sind stattdessen dimensionale Datenstrukturen. Diese sehen die Aufteilung zusammengehöriger Daten in Dimensionen vor und werden in traditionellen BI-Umgebungen dazu verwendet, Ad-hoc- oder OLAP-Analysen durzuführen. Die Ausweitung des Anwendungsbereichs von Business-Intelligence-Systemen auf operative Fragestellungen in den letzten beiden Jahrzehnten hat zu heterogenen Anwendergruppen mit neuen, sich häufig ändernden Anforderungen geführt. Der Aufbau und die Betreuung einer großen Anzahl dimensionaler Strukturen ist durch Business-Intelligence-Experten jedoch in der Regel nicht zu leisten, wodurch diese Form der Modellierung, trotz ihrer offenkundigen Vorteile, in den letzten Jahren an Bedeutung verloren hat. Durch das, in diesem Beitrag vorgestellte Konzept, wird es Self-Service-Anwendern möglich, eigenständig dimensionale Modelle zu erstellen, ohne auf die Expertise von Fachleuten zurückgreifen zu müssen. Der Ablauf der Ad-hoc-Sternschema-Generierung kann dabei in drei Phasen unterteilt werden. In der ersten Phase erfolgt nach Identifizierung der Datentypen einer jeden Tabellenspalte die Transformation der flachen Tabelle in das Sternschema. Für die Identifizierung und Zusammensetzung der Dimensionstabellen wird ein Verfahren, basierend auf der Ermittlung funktionaler Abhängigkeiten, verwendet. In der zweiten Phase sind die generierten Ergebnisse manuell zu evaluieren und falls nötig zu korrigieren. In der dritten Phase werden die identifizierten Dimensions- und Faktentabellen mit Werten gefüllt und als separate Dateien ausgegeben.
Prof. Dr. Michael Schulz hält eine Professur für Wirtschaftsinformatik, insb. analytische Informationssysteme an der NORDAKADEMIE - Hochschule der Wirtschaft in Elmshorn und ist Studiengangsleiter des Master-Studiengangs 'Applied Data Science'. Seine Interessenschwerpunkte in Lehre, Forschung und Praxisprojekten liegen in der Business Intelligence und der Data Science. Er ist einer der Autoren des DASC-PM-Konzeptes.
Vortrag Teilen