Einsatz von Machine Learning zur Effizienzsteigerung und Validierung in der Pharmaindustrie
In diesem gemeinsamen Präsentationsblock stehen zwei komplementäre Ansätze im Mittelpunkt, die den Einsatz von Machine Learning (ML) in der Pharmaindustrie zur Optimierung von Prozessen und Einhaltung regulatorischer Anforderungen thematisieren.
Alisa Walda und Dr. Julian Mußhoff eröffnen die Präsentation mit einem Einblick in die innovativen digitalen Strategien der Bayer AG. Sie zeigen auf, wie durch die Integration und Analyse von hochqualitativen Daten aus verschiedenen Produktionssystemen in der Cloud, mithilfe von ML-Methoden, die Produktionsausbeuten gesteigert werden können, ohne dabei die Qualität zu kompromittieren. Die Präsentation beleuchtet die Herausforderungen bei der GxP-konformen Validierung von ML-Modellen und die Implementierung von robusten Datenpipelines und Teststrategien.
Im Anschluss daran baut Dr. Philipp Kazzer von Syncwork AG auf den zuvor präsentierten Konzepten auf und geht spezifisch auf die Bedeutung der Trainingsdaten ein. Seine Studie zur Entitätenerkennung in der Pharmakovigilanz nutzt ML und NLP, um die Korrelation zwischen der Anzahl und Qualität der Trainingsdaten und der Modellgenauigkeit zu untersuchen. Durch die detaillierte Charakterisierung des verwendeten Datensatzes und den Einsatz fraktioneller k-fold Kreuzvalidierung am Beispiel eines T5-Sprachmodells werden wertvolle Erkenntnisse für die Optimierung von ML-Modellen in der Pharmakovigilanz gewonnen.
Diese Präsentationen betonen die Bedeutung einer soliden Datenbasis und die Notwendigkeit einer engen Zusammenarbeit zwischen IT-, Produktions- und medizinischen Experten, um die Potenziale von ML voll auszuschöpfen und nachhaltige Verbesserungen in der pharmazeutischen Industrie zu erzielen.
Zielpublikum: Pharma decision makers, Data Engineer, Data Scientist
Voraussetzungen: keine
Schwierigkeitsgrad: Basic
Extended Abstract:
In der Pharmaindustrie werden alle Schritte der Produktion im Detail dokumentiert. Dies führt zu einer großen Menge an hochqualitativen Daten in Systemen wie einem Manufacturing Execution System, Enterprise Resource Planning und Prozessleitsystem.
Hieraus ergibt sich allerdings auch die Herausforderung, diese verschiedenen Daten in der Cloud zusammenzubringen und auszuwerten. Insbesondere geht es darum, moderne Datenpipelines und Machine-Learning-Methoden robust abzusichern und in bestehende regulierte Prozesse zu integrieren. Der Vortrag wird auf Teststrategien, Versionskontrolle und Änderungsmanagement von Datenpipelines und Machine Learning eingehen.
Dafür kombinieren wir proprietäre Systeme und Open-Source-Software. Trotz der Ansprüche an die Qualität müssen Nutzer in die Lage versetzt werden, die Produktion signifikant zu verbessern. Es gilt daher, sich von Anfang an mit den Produktionskollegen auf das Ziel zu fokussieren und entsprechende wertsteigernde (Machine Learning) Use-Cases zu identifizieren.
Dr. Julian Mußhoff ist ein Data Scientist in der pharmazeutischen Produktion am Standort Elberfeld. Als studierter Physiker stellt er sich täglich den Herausforderungen eines Produktionsstandorts wie Prozessoptimierung, Root-cause Analysen und der Entwicklung digitaler Tools.
Alisa Walda ist IT-Beraterin bei der Syncwork AG mit Schwerpunkt Data Engineering und Reporting.
- 01/24 - heute: Consultant bei der Syncwork AG im Bereich System Development
- 07/22 - 01/24: Junior Consultant bei der Syncwork AG im Bereich Business Intelligence
- 07/18 - 07/22: Werkstudentin bei der Syncwork AG im Bereich System Development
- 10/17 - 03/22: Bachelorstudium Informatik an der TU Berlin
- 12/22 - heute: Management Consultant bei der Syncwork AG im Bereich Business Intelligence
- 12/18 - 11/22: Senior Consultant bei der Syncwork AG im Bereich System Development
- 10/15 - 11/18: Consultant bei der Syncwork AG im Bereich System Development
- 10/10 - 12/14: Wissenschaftlicher Mitarbeiter im Excellenz Cluster Languages of Emotion der Freien Universität Berlin/Charité Tätigkeitsschwerpunkt: Experimentelles-Design, Datenanalyse, Publikation
- 10/05 - 10/14: Studium der Bioinformatik/Abschluss: Promotion
Vortrag Teilen