
Die im Konferenzprogramm der TDWI München 2022 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Hier können Sie die Programmübersicht der TDWI München 2022 mit einem Klick als PDF herunterladen.
ROOM K4 | KI-Lösung ist das Ziel - mit ML Engineering erreichen Sie es
Künstliche Intelligenz ist schon längst dem Pionierzeitalter entwachsen. Doch um mit dem Einsatz von KI einen echten Mehrwert für das Unternehmen zu schaffen, kommt es auf die qualitativ hochwertige Bereitstellung von Daten an. Hier kommt ML Engineering ins Spiel - ein Konzept zur Bewältigung der hohen Komplexität von Daten bei der Entwicklung von KI-Systemen. Im Vortrag wird eine ML Engineering Roadmap vorgestellt, mit der dieses häufig unterschätzte und doch so kritische Konzept erfolgreich eingesetzt werden kann.
Zielpublikum: Data Engineer, Data Scientist, Unternehmer mit praktischem KI-Interesse
Voraussetzungen: Interesse an KI- und ML-Themen, Grundlagen- bis fortgeschrittene Kenntnisse in den Bereichen Data Science und/oder Data Engineering
Schwierigkeitsgrad: Fortgeschritten
Lars Nielsch ist als Principal Solution Architect für Capgemini tätig. Nach seinem Studium der Angewandten Informatik an der TU Dresden ist er seit 1998 in der BIA-Beratung tätig. Seine besonderen Interessen liegen in den Themen Enterprise BI, Large Databases, Data Engineering (ETL-Design), Data Science (MLOps) und Big-Data-Architekturen (Data Vault, Data Lake, Streaming).
ROOM K4 | One Size Does Not Fit All: Make The Right Data Mesh For You
As the data mesh paradigm takes the industry by storm, the conversation deep dives into the architecture, neglecting the socio-organizational element. Data driven organizations must invest not only in infrastructure but also data organization and culture.
Target Audience: Executive, senior business managers
Prerequisites: None
Level: Basic
Jennifer Belissent joined Snowflake as Principal Data Strategist in early 2021, having most recently spent 12 years at Forrester Research as an internationally recognized expert in establishing data and analytics organizations and exploiting data's potential value. Jennifer is widely published and a frequent speaker. Previously, Jennifer held management positions in the Silicon Valley, designed urban policy programs in Eastern Europe and Russia, and taught math as a Peace Corps volunteer in Central Africa. Jennifer earned a Ph.D. and an M.A. in political science from Stanford University and a B.A. in econometrics from the University of Virginia. She currently lives in the French Alps, and is an avid alpinist and intrepid world traveler.