Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download
Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.
Data volumes are exploding, and companies are striving to use advanced analytics for more data-driven insights and self-learning systems. Enabling scalable data onboarding and analytics delivery processes with little human intervention but strong governance is key to extract value from Big Data and Analytics successfully. The CC CDQ has developed a framework for governing Big Data and Analytics in close collaboration with industry partners. The framework supports practitioners to setup processes, roles and tools to scale analytics use cases.
Target Audience: Analytics Manager, Data Manager, Project Leader
Prerequisites: Basic knowledge and some experience in analytics or data management
Level: Basic
Mit der Zeit verändern sich Informationen auf komplexe Art und Weise. Zum Beispiel ändern sich die Zuordnung von Produkten zu Produktgruppen oder auch die Zuordnung von Preisspannen der Produkte nach Zielgruppe, Vertriebskanal, Rabattsystem und vieles mehr im Zeitverlauf.
Zielpublikum: Data Modeler, Data Engineer, BICC Team Member, BI-Manager
Voraussetzungen: Grundlegendes Verständnis von ‚time in data warehousing‘
Schwierigkeitsgrad: Anfänger
Extended Abstract:
Mit der Zeit verändern sich Informationen auf komplexe Art und Weise. Zum Beispiel ändern sich die Zuordnung von Produkten zu Produktgruppen oder auch die Zuordnung von Preisspannen der Produkte nach Zielgruppe, Vertriebskanal, Rabattsystem und vieles mehr im Zeitverlauf.
Fachbereiche planen bereits heute zukünftige Preise und Preisspannen, strukturieren Produktgruppen um, wie zum Beispiel für eigene Produktgruppen mit Rabatten speziell für den 'Black Friday'. Diese Informationen können und werden lange bevor sie in der Realität gültig sind, in den Systemen gespeichert.
In der heutigen Session gibt Dirk Lerner einen Einblick in Use Cases für bitemporale Daten und warum diese für heutige Geschäftsanforderungen wichtig und grundlegend sind. Anschließend visualisiert er die Vorgehensweise der bitemporalen Historisierung von Daten anhand eines einfachen Beispiels. Zum Abschluss stellt Dirk Lerner die aktuell existierenden Technologien vor, die eine (bitemporale) Historisierung von Daten bereits implementiert haben.
How do you enable digital transformation and create value through analytics?
Building a global analytics function across a diverse application landscape incl. SAP and multiple data sources provides many challenges. See how ABB successfully managed this journey and now enjoys the benefits of operational analytics globally, a shift in mindsets and a more data driven way of working.
You will also discover the impact of key technologies used (Change-Data-Capture, Automation & AI) and see real examples of specific analytics deployed in the business.
Target Audience: Business analysts, decision makers, C-Level
Prerequisites: Basic Knowledge
Level: Basic
Extended Abstract:
How do you enable digital transformation and create value through analytics?
This session tells the story of building a global analytics function in an environment with a diverse set of applications including a complex SAP system landscape and many data sources. The speaker will talk about some of the challenges in the journey but also the success in deploying operational analytics globally, shifting mindsets and help transition to a more digital/data driven way of working.
The audience will also discover the impact of key technologies used (e.g.: Change-Data-Capture, Visualization, Automation and AI) and how these helped to create value and drive revenue increase for ABB, using real examples of specific analytics deployed in the business.
Die Implementierung einer effizienten KI wird durch die Verfügbarkeit fortschrittlicher Computer und schneller und großer Massenspeicher ermöglicht. Häufig stellen sich hierbei Fragen im Zusammenhang mit dem Datenschutzrecht. Die DSGVO ist hingegen nicht anwendbar, wenn anonymisierte Daten genutzt werden. Doch wann liegt eine 'rechtssichere' Anonymisierung vor? Ist sie im Zeitalter von Big Data überhaupt möglich? Der Beitrag stellt dies aus Sicht des Bereichs 'Selbstfahrender Fahrzeuge' dar und beleuchtet essenzielle rechtliche Fallstricke.
Zielpublikum: Der Vortrag verknüpft technische und rechtliche Erkenntnisse beim Einsatz von KI und ML und erklärt daher Grundlagen und Besonderheiten aus beiden Bereichen, sodass er sich für ein breites Publikum eignet.
Voraussetzungen: Es genügt Vorwissen entweder aus dem technischen oder rechtlichen Bereich. Der Vortrag ist gelungen, wenn Techniker danach ein Grundverständnis der relevanten Rechtsfragen haben und Techniker und Juristen sich danach im Bereich autonomer, selbst lernender
Schwierigkeitsgrad: Anfänger
Extended Abstract:
Maschinelles Lernen (ML) und Deep Learning (DL) sind Werkzeuge, um KI-Anwendungen zu implementieren. Die Implementierung einer effizienten KI wird durch die Verfügbarkeit fortschrittlicher Computer und schneller und großer Massenspeicher ermöglicht. Häufig handelt es sich bei den genutzten Daten um personenbezogene Daten. Somit rücken Fragen im Zusammenhang mit dem Datenschutzrecht immer mehr ins Licht der Öffentlichkeit. Die Frage des 'Personenbezugs' von Daten wird im Datenschutzrecht seit jeher kritisch diskutiert. Die Rechtsprechung und auch Datenschutz-Aufsichtsbehörden gehen grundsätzlich von einem weiten Verständnis personenbezogener Daten aus. Einen neuen Höhepunkt erreicht diese Diskussion im Kontext von KI-Anwendungen. KI-Anwendungen müssen mit Datensätzen trainiert werden, die einen Personenbezug enthalten können, ohne dass dies auf Anhieb ersichtlich ist. In diesem Fall ist das strenge Regime der Datenschutzgrundverordnung (DSGVO) anwendbar. Dies ist jedoch nicht der Fall, wenn die Datensätze anonymisiert sind. Allerdings ist die Frage, ob Daten personenbezogen oder anonym sind, nicht nur eine technische, sondern vor dem Hintergrund der DSGVO auch eine rechtliche. Wann liegt eine 'rechtssichere' Anonymisierung vor? Ist sie im Zeitalter von KI und Big Data überhaupt noch möglich? Der Beitrag stellt dies aus Sicht von Anwendungen und Datensätzen im Bereich 'Selbstfahrender Fahrzeuge' dar und beleuchtet essenzielle rechtliche Fallstricke.
Michael Kolb ist seit 14 Jahren im Business Intelligence-Umfeld tätig - davon seit über 8 Jahren als BI-Projektleiter und BI-Architekt im BICC der HUK-COBURG. Seit zwei Jahren begleitet er die Themen Data Cataloging und Data Governance im Kontext des erweiterten Daten-Ökosystems der HUK-COBURG.
Dr. Christian Fürber is founder and CEO of the Information Quality Institute GmbH (iqinstitute.de), a specialized consultancy for Data Excellence and Data Management solutions. Prior to founding IQI in 2012, he held several data management positions at the German Armed Forces where he designed and executed the Forces’ Data Management Strategy. Since his leave from the Forces, Christian and his team have successfully established data management framworks for many companies in Europe helping them to accellerate innovation and digitization through data. Christian is also author, lecturer and speaker and organizes the TDWI Themenzirkel "Data Strategy & Data Governance".
Vortrag Teilen