
Please note:
On this site, there is only displayed the English speaking sessions of the TDWI München digital. You can find all conference sessions, including the German speaking ones, here.
The times given in the conference program of TDWI München digital correspond to Central European Time (CET).
By clicking on "EVENT MERKEN" within the lecture descriptions you can arrange your own schedule. You can view your schedule at any time using the icon in the upper right corner.
ROOM K3 | Data Architecture: Data Lake vs Lakehouse vs Data Mesh
In order to succeed in creating a data driven enterprise it is clear that choosing the right data architecture is now critical. This session explores the evolution of data and analytics architecture and looks at what is needed to shorten time to value and create a data driven enterprise. It looks at the pros and cons of data lake, lakehouse and data mesh architectures and asks: Is there a best approach? Is a lot more than this needed to succeed?
Target Audience: Data architects, CDOs, CAOs, enterprise architects, data scientists, business analysts
Prerequisites: Basic understanding of data architectures used in supporting analytical workloads
Level: Advanced
Extended Abstract:
In many companies today the desire to become data driven goes all the way to the boardroom. The expectation is that as more and more data enters the enterprise, it should be possible to understand and use it to quickly and easily drive business value. In order to succeed in creating a data driven enterprise it is clear that choosing the right data architecture is now critical. However, data and analytics architecture has been evolving over recent years to a point where now there are multiple options. Is it a data lake that is needed? Is it a lakehouse? Or is it a data mesh? Should this be the focus or is it just vendor hype to fuel their own interests? What are the pros and cons of these options? Is there a best approach? Is a lot more than this needed to succeed? This session explores the evolution of data and analytics architecture and looks at what is needed to shorten time to value and create a data driven enterprise.
- Data and analytics - where are we?
- Data and analytics architecture evolution
- Architecture options and their pros and cons - data lake Vs lakehouse Vs data mesh
- The shift to data fabric, DataOps, and MLOps to industrialise pipeline development and model deployment
- Using a data and analytics marketplace to putting analytics to work across the enterprise
Mike Ferguson is Managing Director of Intelligent Business Strategies and Chairman of Big Data LDN. An independent analyst and consultant, with over 40 years of IT experience, he specialises in data management and analytics, working at board, senior IT and detailed technical IT levels on data management and analytics. He teaches, consults and presents around the globe.