PROGRAMM

Die im Konferenzprogramm der TDWI München 2022 angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.

 

Hier können Sie die Programmübersicht der TDWI München 2022 mit einem Klick als PDF herunterladen.

ROOM F111 | Mit Customer Analytics zur Next Best Action für jeden Kunden

Viele Versicherer versuchen, Kundeninteraktionen mithilfe von Data Science-Methoden zu optimieren. Wir zeigen einen systematischen Ansatz, wie Customer und Sales Analytics effizient entlang der gesamten Customer Journey eingesetzt werden können.

Zielpublikum: Vertrieb, Kundenmanagement, Business Development, Data Analytics
Voraussetzungen: keine spezifischen
Schwierigkeitsgrad: Fortgeschritten

Extended Abstract:
Der heutige Versicherungskunde erwartet maximalen Komfort, d. h. passgenauen individualisierten Service zum richtigen Zeitpunkt über den bevorzugten Kanal.

Im Rahmen dieses Vortrags geben wir Ihnen einen strukturierten Lösungsansatz für die nachhaltige Nutzung von Customer Analytics an die Hand, um den gestiegenen Anforderungen der Versicherungskunden zu begegnen. Wir orientieren uns dabei an vier Schritten:

1) Datenstrukturierung und Sammlung aller Kundendaten und Touchpoints stellen den ersten Schritt dar und bieten Transparenz über die Kundeninteraktionen.  

2) Ist die technische Basis vorhanden, prognostizieren Machine Learning-Modelle das Kundenverhalten und die Kundenbedürfnisse entlang der Customer Journey.  

Wir zeigen Ihnen hierzu Architekturoptionen zur Datenzentralisierung sowie mögliche Vorgehensweisen anhand konkreter Use-Cases aus Praxisprojekten.

3) Die Erklärung der Vorhersagen mittels Explainable AI schafft weiterführende Erkenntnisse und Hintergrundinformationen zu den Prognosen.

4) Den finalen Schritt stellt die Zusammenführung aller über die vorherigen Aktivitäten gesammelten Erkenntnisse hin zur nächsten besten Aktion für die individuelle Customer Journey des Kunden dar.  

Wie diese Technologien Kunden individuelle Ausgestaltung der maschinellen Empfehlungen und somit eine kundenzentrierte Perspektive ermöglichen, ist der Schwerpunkt dieses Vortragsabschnitts. Dazu thematisieren wir Ansätze zur Ermittlung der 'Next Best Action', mit denen Versicherer den gestiegenen Erwartungen der Kunden gerecht werden und ihre Bedürfnisse optimal bedienen.

Janera Kronsbein, Bachelor of Science der Wirtschaftsmathematik, Studium an der Universität Bielefeld. Seit 2014 als Business Analyst, Data Science Consultant und Produktmanagerin tätig. Als Projektleiterin verantwortet sie seit Anfang 2021 Data Analytics-Projekte bei der Informationsfabrik - hier insbesondere mit dem Schwerpunkt Customer Analytics.

Thomas Löchte ist Geschäftsführer und Gründer der IKOR Informationsfabrik GmbH. Er arbeitet seit 25 Jahren im Data Analytics-Umfeld und war in vielen verschiedenen Projekten und Rollen tätig. Heute unterstützt er das Lösungsdesign und coacht Manager und Führungskräfte technologisch und organisatorisch zu Data Analytics und KI-Themen.

Janera Kronsbein, Thomas Löchte

Vortrag Teilen

ROOM F111 | Künstliche Intelligenz: trotzdem flexibel und transparent?

Es gibt 2 große Show Stopper für KI:

  1. Banken benötigen Transparenz, warum KI was empfiehlt, bspw. die Annahme eines Kredites. Eher einfache Datenanalysemethoden, wie Entscheidungsbäume, geben diese Transparenz.
  2. Aber sie sind recht starr. Jedoch wird Flexibilität benötigt Deep Learning ist adaptiv, aber eine Black Box. Daher wurde das Positive „beider Welten“ vereint in Deep Learing (DL) mit SEMANTISCHEN Netzen.

Diese Präsentation beschreibt semantisches DL in der Kredit-/Förderbearbeitung.

Zielpublikum: Representatives from Banking or Insurance
Voraussetzungen: Keine
Schwierigkeitsgrad: Einsteiger

Britta Hilt beschäftigt sich seit 2011 mit der Anwenderseite von Künstlicher Intelligenz. Sie ist Mitbegründerin und Geschäftsführerin der KI-Firma IS Predict, die sich einen Namen gemacht durch ihre Automatisierung von Data Science sowie durch erklärende KI. Vor der Gründung von IS Predict war sie über 15 Jahre in einer internationalen IT-Firma (IDS Scheer / Software AG) tätig, zuletzt als Director verantwortlich für Product Management und Solution Marketing.

Britta Hilt

Vortrag Teilen