Die im Konferenzprogramm der TDWI München 2024 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Thema: Data Governance
- Dienstag
11.06. - Mittwoch
12.06. - Donnerstag
13.06.
Dieser Vortrag beleuchtet Data Mesh im Detail und streift dabei auch alle zugehörigen Themen, wie Domain-oriented decentralized Data Ownership and Architecture, Data as a Product, Self-serve Data Infrastructure as a Platform und Federated Governance.
Ein besonderer Fokus dieses Vortrags liegt auf den Parallelen zu modernen cloud-nativen OLTP-Architekturen. Der Vortrag endet mit einem Ausblick auf zukünftige Entwicklungen im Bereich Data Mesh und gibt Empfehlungen für Unternehmen, die eine agile und skalierbare Datenstrategie anstreben.
Zielpublikum: Datenarchitekten, Data Engineers und Führungskräfte
Voraussetzungen: Architekturwissen hilfreich, Governance
Schwierigkeitsgrad: Basic
Extended Abstract:
Dieser Vortrag beleuchtet das Konzept des Data Mesh, das einen Paradigmenwechsel in der Verwaltung von Daten in Unternehmen verspricht. Data Mesh geht über traditionelle Vorgehen einer zentralen Datenhaltung für analytische Daten hinaus, indem es eine dezentrale, föderierte Dateninfrastruktur fördert. Das Versprechen eines Data Mesh: Datensilos, wie wir sie bisher kennen, gehören der Vergangenheit an.
Der Vortrag beginnt mit einer Einführung in die Herausforderungen herkömmlicher Datenarchitekturen und zeigt auf, wie Data Mesh diese adressiert.
Im weiteren Verlauf werden die vier Grundprinzipien von Data Mesh detailliert erläutert: Domain-oriented decentralized Data ownership and architecture, Data as a product, Self-serve data infrastructure as a platform, Federated governance. Diese Prinzipien ermöglichen eine effiziente Skalierung, verbessern die Datenqualität und fördern die Eigenverantwortung der Teams für ihre Daten. Dabei wird auch betrachtet, was diese Ideen eines Data Mesh für die Organisation und die Menschen bedeuten.
Ein besonderer Fokus dieses Vortrags liegt auf den Parallelen zu modernen cloud-nativen OLTP-Architekturen, wobei die Übertragbarkeit der Data-Mesh-Prinzipien auf in diesem Zusammenhang bereits etablierte Integrationskonzepte und -prozesse betont wird. Der Vortrag endet mit einem Ausblick auf zukünftige Entwicklungen im Bereich Data Mesh und gibt Empfehlungen für Unternehmen, die eine agile und skalierbare Datenstrategie anstreben. Dieser Vortrag richtet sich an Datenarchitekten, Data Engineers und Führungskräfte, die ihre Dateninfrastruktur zukunftsfähig gestalten möchten.
Fabian Hardt arbeitet als Solution Architect bei der OPITZ CONSULTING Deutschland GmbH. Er verfügt über langjährige Projekterfahrung in Analytics-Projekten und beschäftigt sich mit modernen Architekturen für die gestiegenen Anforderungen im Zeitalter der Digitalisierung.
Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/fabian-hardt/
Sven Bernhardt ist ein Technologie-Enthusiast und arbeitet für Opitz Consulting in Deutschland als Chief Architect und Integration Evangelist im Corporate Development Team. In seiner Rolle ist er für das Management des Technologieportfolios und die Entwicklung von Best Practices und Richtlinien verantwortlich. Darüber hinaus unterstützt Sven seine Kollegen bei der Implementierung von Softwarelösungen für Kunden. Zu seinen Kernthemen gehören cloud-native Architekturen, API-Management und Service Mesh. Sven spricht regelmäßig auf verschiedenen Konferenzen über Technologie- und Architekturthemen und teilt seine Gedanken und Erfahrungen in Artikeln und Blogbeiträgen. Zudem beteiligt er sich als Kong Champion sowie Oracle ACE Pro aktiv am Wissensaustausch in der Development Community.
Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/sven-bernhardt/
Vortrag Teilen
Stellen Sie sich vor, Sie haben in einem Großunternehmen als Daten-Architekt einer BI-Initiative mit ca. 160 Daten-Enthusiasten aus zentraler IT, Business Units und Zentralabteilungen die Aufgabe, die Architektur zu gestalten. Ist das wie einen Sack Flöhe zu hüten? Wie prägt ein 'people first'-Ansatz die Architekturarbeit? Und welchen Beitrag leisten aktuelle technische und organisatorische Ansätze wie Cloud, Data Marketplaces oder Data Mesh dabei?
Zielpublikum: Data Engineer, Project Leader, Decision Makers, Architects
Voraussetzungen: keine
Schwierigkeitsgrad: Basic
Edgar Kaemper ist Architecture Guide bei Bosch im Bereich xBI (Cross Business Intelligence). Er hat in Groß- und mittelständischen Unternehmen Big-Data-Architekturen und Data-Warehouse-Services (SaaS) aufgebaut und betrieben.
Edgar Kaemper ist Sprecher auf Anwendertreffen und Konferenzen.
Nebenberuflich ist er Vorsitzender einer Stiftung und unterstützt als Perspektivenentwickler einen Jugendverband mit > 50.000 Ehrenamtlichen in Change-Prozessen.
Die Vision für Data Governance bei der HUK-COBURG ist es, datengetriebene Use Cases durch einen nachhaltigen Umgang mit Daten in Fach- und IT-Bereichen zu unterstützen. Hierfür wurden insbesondere vier Handlungsfelder identifiziert:
- Rollen und Verantwortlichkeiten
- Data-Governance-Prozesse
- Prinzipien, Richtlinien und Standards
- Data-Governance-Assets
Im Bottom-up-Ansatz für Data Governance bei der HUK-COBURG sind insbesondere Daten-Projekte ein Erfolgsfaktor, um Data Governance im Unternehmen zu etablieren.
Zielpublikum: Data Governance Manager, Data Catalog Manager, Data Engineer, BI Project Leader, Data Owner, Data Steward
Voraussetzungen: Basiswissen in Data Governance und Data Engineering
Schwierigkeitsgrad: Basic
Extended Abstract:
Am Beispiel eines Projektes zur Datenversorgung 'Data Analytics in der Krankenversicherung' wird dargestellt, wie Data Governance in der HUK-COBURG etabliert wird und ein Datenkatalog die Datennutzung nachhaltig vereinfacht und beschleunigt. Hierbei werden folgende vier Handlungsfelder berücksichtigt:
- Zuweisung von Rollen und Verantwortlichkeiten, z. B. Data Owner, Data Steward und Data Enabler.
- Operationalisierung von Data-Governance-Prozessen, z. B. die kontinuierliche fachliche Beschreibung von Daten-Assets.
- Operationalisierung von Prinzipien, Richtlinien und Standards im Kontext Data Governance, z. B. Datennutzung und Datenfreigabe.
- Katalogisierung von Data-Governance-Assets mithilfe eines Integrationsframeworks, z. B. technische Assets und Data Lineage.
Die Erfahrungen aus dem Projektverlauf zeigen, dass sich Data-Governance-Aktivitäten sehr gut in Daten-Projekten integrieren lassen und sich über diesen Weg Data Governance sehr gut im Unternehmen operationalisieren lässt. Die Aufwände, die Data Stewards zu Beginn eines Projekts haben, zahlen sich schon während der Projektphase wieder aus. Data-Governance-Prozesse und Werkzeuge (insbesondere der Datenkatalog) sichern den nachhaltigen Mehrwert für Data Analytics - auch über die Projektphase hinaus. Eine gelebte, etablierte Data Governance unterstützt die Data-Analytics-Aktivitäten der HUK-COBURG, sodass es nur einen Schluss geben kann: Data-Governance-Aktivitäten müssen Pflichtbestandteil von Daten-Projekten werden.
Lisa Beierweck ist Data Catalog Manager und Data Engineer bei der HUK-COBURG. Seit mehr als 4 Jahren begleitet sie die Data-Governance-Initiative der HUK-COBURG von Beginn an und verantwortet die Umsetzung und Realisierung eines Data Catalogs sowie die Weiterentwicklung und die strategische Positionierung der Plattform innerhalb des Unternehmens. Lisa hat eine Leidenschaft dafür, Transparenz in BI-Anwendungen zu bringen und den Fachabteilungen aufzuzeigen, welche Mehrwerte durch einen Data Catalog entstehen.
Markus Werner ist seit 12 Jahren im Business-Intelligence-Umfeld tätig - davon seit über 5 Jahren als BI-Projektleiter und BI-Architekt im BICC der HUK-COBURG. Seit mehreren Jahren begleitet er die Themen Data Cataloging und Data Governance im Kontext des erweiterten Daten-Ökosystems der HUK-COBURG. Als Projektleiter ist er aktuell verantwortlich für den Aufbau einer Data-Analytics-Datenbasis für das Aktuariat der privaten Krankenversicherung.
Vortrag Teilen
Mit mehr als 1000 Nutzern auf der Cloud-Datenplattform muss DKV Mobility den nächsten Evolutionsschritt zur Data Driven Company gehen.
DKV Mobility nutzt Frosty von Snowflake, um Business Value für Non-Developer zu generieren, statt dem AI-Hype zu folgen.
Der Use Case erläutert den Why/How/What-Ansatz von DKV Mobility auf dem Weg zur Implementierung von Business-Modellen, die Generative AI enthalten. Abschließend wird auf die Do's & Don'ts eingegangen.
Zielpublikum: Entscheider, Interessierte an Generative AI
Voraussetzungen: keine
Schwierigkeitsgrad: Basic
Extended Abstract:
Mit einer voll ausgereiften Cloud-Datenplattform mit mehr als 1.000 Nutzern muss DKV Mobility den nächsten Evolutionsschritt hin zu einem datengesteuerten Unternehmen gehen.
Während sich andere Unternehmen auf den ChatGPT-Hype konzentrieren, nutzt DKV Mobility Frosty von Snowflake, um einen echten Business Value für Non-Developer im Unternehmen zu generieren.
Mit der richtigen Kombination aus Cloud-Datenplattform und Data-Governance-Konzept eröffnet Snowflake ein völlig neues Feld für die Nutzung definierter Business-Daten zur Generierung von Business Value. Der Use Case erläutert den Why/How/What-Ansatz von DKV Mobility auf dem Weg zur Implementierung von Business-Modellen, die Generative AI enthalten. Abschließend wird auf die Do's & Don'ts eingegangen.
Dr. Sönke Iwersen verantwortet seit mehr 15 Jahren Data & Analytics-Organisationen in verschiedenen Industrien (u.a. Telefónica, Handelsblatt, XING, Fitness First, HRS). Schwerpunkte sind die Entwicklung von Digitalisierungs- und Datenstrategien und deren Operationalisierung mit cloudbasierten analytischen Plattformen und ML/AI-Lösungen. Er präsentiert seine innovativen Ergebnisse regelmäßig auf nationalen und internationalen Konferenzen.
Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/soenke-iwersen/
Vortrag Teilen
Im Vortrag wird die praktische Umsetzung einer Architektur auf Basis des modern Technology Stack (Einsatz von: DBT, Databricks, Dagster) im Kontext der Automobilindustrie gezeigt. Hierbei wird besonderer Fokus auf ein modernes Orchestrationswerkzeug gelegt, welches am Markt noch nicht so bekannt ist. Es wird auch übergreifend auf den Gesamtkontext eines Enterprise-Unternehmens hinsichtlich Data Governance, Data Security und Data Mesh sowie die Nutzung mehrerer Cloud-Hyperscaler eingegangen.
Zielpublikum: Data Engineers, BI Specialists, Data Managers, BI Solution Architects, Cloud Engineers
Voraussetzungen: Basiswissen über modernes Datenmanagement, Data Warehousing und BI
Schwierigkeitsgrad: Advanced
Tim Grützner arbeitet in seiner aktuellen Rolle als Produktmanager für Data Platforms and Products übergreifend für die Realisierung einer Datenplattform auf Basis des modern Technology Stack und verantwortet eine Großzahl von BI- und Dateninitiativen für die Marke Volkswagen Nutzfahrzeuge und in der Volkswagen AG. Er ist seit ca. 10 Jahren für Volkswagen tätig und hatte verschiedene Rollen im Kontext Data Management wie z.B. Head of BI für VW Nutzfahrzeuge in der Vergangenheit inne.
Data Transparency is a basic need of every data worker. It is crucial to find the right data in a limited amount of time to keep the time-to-market of data and analytical products short. However, documenting and classifying data manually can be cumbersome due to the vast amount of data. In this session, we present the approach MediaMarktSaturn has taken to use LLMs and other AI models in combination with a data catalog to establish a high level of data transparency in a semi-automated way.
Target Audience: Chief Data Officers, Data Governance Managers, Data Strategists, Data Engineers, Data Scientists, Subject Matter Experts
Prerequisites: Basic knowledge of Data Catalogs and LLMs
Level: Basic
Extended Abstract:
Data Transparency is a basic need of every data worker. It is crucial to find the right data in a limited amount of time to keep the time-to-market of data and analytical products short. But with the ever-growing amount of data, it gets more and more difficult to keep up a suitable level of data transparency. In this session, we present the approach MediaMarktSaturn has taken to use LLMs and Open Source Data Catalogs to establish a high level of data transparency in a semi-automated way. With this approach, it is possible to keep the manual work at a suitable level and manage data transparency in an efficient way. Moreover, we will outline how this approach is integrated into the overall Data Governance and Data Architecture.
Dieter Berwald is Competency Lead and Product Owner at MediaMarktSaturn Technology, where he focuses on advanced analytics and data catalog applications. He currently leads projects aimed at entity recognition in large cloud data lakes, managing data access, and leveraging metadata for enhanced data utilization.
Dr. Christian Fürber ist promovierter Datenqualitätsexperte und Geschäftsführer der Information Quality Institute GmbH (iqinstitute.de), einem spezialisierten Beratungsunternehmen für Data Excellence und Data Management Lösungen. Vor der Gründung von IQI im Jahr 2012 war er in verschiedenen Positionen im Datenmanagement tätig. Unter anderem etablierter er für die Bundeswehr eine der ersten Data Governance Organisationen und führte dort ein standardisiertes Datenqualitätsmanagement ein. Christian und sein Team haben unzählige Datenprojekte und -strategien für bekannte Unternehmen verschiedener Branchen erfolgreich umgesetzt und ihnen dabei geholfen, erheblichen Mehrwert aus ihren Daten zu ziehen. Neben seiner Tätigkeit bei IQI ist Christian auch Autor und Redner auf Konferenzen (u.a. am MIT) und organisiert den TDWI Themenzirkel "Data Strategy & Data Governance".
Nitin embarked on his IT career in 2014 as a consultant, quickly gaining a reputation for his expertise and adaptability. Throughout his career, he has worked with a diverse range of clients across industries including telecommunications, petroleum, and disaster recovery. Nitin holds a Master's degree from the prestigious Technical University of Munich (TUM), which further solidified his foundation in data architecture and engineering.
Following his studies, Nitin excelled as a Lead Data Architect/Data Engineer at several renowned companies. His innovative cloud solution architecture, particularly for real-time racetrack analytics, has been instrumental in securing multi-million dollar deals. Currently, Nitin serves as the Data Governance Lead at MediaMarktSaturn, where he continues to drive data excellence and governance initiatives.
Vortrag Teilen
Supporting analytics and data science in an enterprise involves more than installing open source or using cloud services. Too often the focus is on technology when it should be on data. The goal is to build multi-purpose infrastructure that can support both past uses and new requirements. This session discusses architecture principles, design assumptions, and the data architecture and data governance needed to build good infrastructure.
Target Audience: BI and analytics leaders and managers; data architects; architects, designers, and implementers; anyone with data management responsibilities who is challenged by recent changes in the data landscape
Prerequisites: A basic understanding of how data is used in organizations, applications and platforms in the data ecosystem, data management concepts
Level: Advanced
Extended Abstract:
The focus in our market has been on acquiring technology, and that ignores the more important part: the landscape within which this technology exists and the data architecture that lies at its core. If one expects longevity from a platform then it should be a designed rather than accidental architecture.
Architecture is more than just software. It starts with uses, and includes the data, technology, methods of building and maintaining, governance, and organization of people. What are design principles that lead to good design and data architecture? What assumptions limit older approaches? How can one modernize an existing data environment? How will this affect data management? This session will help you answer these questions.
Outline - Topics covered:
- A brief history of data infrastructure and past design assumptions
- Categories of data and data use in organizations
- Differences between BI, analysis, and data science workloads
- Data architecture
- Data management and governance processes
- Tradeoffs and antipatterns
Mark Madsen works on the use of data and analytics for decision-making and organizational systems. Mark worked for the past 25 years in the field of analytics and decision support, starting with AI at the University of Pittsburgh and robotics at Carnegie Mellon University.
Vortrag Teilen
Der DKV setzt seit über drei Jahren eine ambitionierte Datenstrategie mit umfassendem Data-Governance-Ansatz um.
Dieser Wandel zeigt beachtliche Fortschritte in der Data-Governance-Organisation, jedoch bleibt der Change in den Köpfen der Belegschaft in Teilen aus.
Um den Wandel zu beschleunigen, implementiert der DKV ein auf Kommunikation ausgerichtetes Change Management. In diesem Vortrag werden der bisherige Change-Management-Prozess sowie die gesammelten Erkenntnisse im Kontext des Data-Governance-Programms beleuchtet.
Zielpublikum: Data Governance Practitioners, Data Governance Managers, Data Strategists, Project Leaders, Change Manager
Voraussetzungen: Grundkenntnisse von Data Governance
Schwierigkeitsgrad: Advanced
Extended Abstract:
Mit seiner ambitionierten Datenstrategie verfolgt der DKV seit über drei Jahren einen umfassenden Data-Governance-Ansatz: Von Beginn an wurde eine Data-Governance-Organisation über alle Datendomänen hinweg aufgesetzt. Dies umfasst die Einführung und die Rollen Data Owner, Domain Owner und Data Steward. Zudem müssen die Mitarbeitenden in den Aufgaben, die mit diesen Rollen einhergehen, intensiv geschult und trainiert werden. Zuletzt gilt es, den Datenkatalog zu implementieren und zu pflegen sowie ein effizientes Datenqualitätsmanagement zu etablieren.
Blickt man heute auf den Stand der Umsetzung, stellt man fest, dass die DG-Organisation, das Datenqualitätsmanagement und der Datenkatalog einen bemerkenswerten Umfang angenommen haben - jedoch fehlt es zum Teil am notwendigen Data-Governance-Mindset innerhalb der Belegschaft. So ist das DG-Programm noch nicht vollständig in den Arbeitsalltag integriert und Data Stewards nehmen ihre Aufgaben nicht immer mit dem notwendigen Nachdruck wahr. Darüber hinaus laufen einige datengetriebene Projekte an der DG-Organisation vorbei. Somit steht der DKV vor der Herausforderung, das Verständnis für und den Mehrwert von Data Governance weiter zu schärfen und zu fördern.
Dem begegnet der DKV damit, ein auf Kommunikation ausgerichtetes Change Management durchzuführen. So vollzog die DG-Organisation zunächst eine Reihe von Workshops, um eine geeignete Kommunikationsstrategie zu erarbeiten. Diese wurden in einem Kommunikationsplan in Form von zielgruppenspezifischen Formaten ausgearbeitet.
Der Vortrag bilanziert zum einen die Erfahrungen der letzten Jahre bis zur Diagnose des verbesserungswürdigen Data-Governance-Mindsets und die Entscheidung hin zum Change Management.
Der Vortrag bilanziert zunächst die Erfahrungen der ersten drei Jahres bis zur Diagnose des verbesserungswürdigen Data-Governance-Mindsets. Im Hauptteil wird die Entscheidung zum Change Management diskutiert und der folgende Change-Prozess, dessen Ergebnisse sowie Anwendung von Change-Management-Tools im Kontext des Data-Governance-Programms vorgestellt.
Dr. Sönke Iwersen verantwortet seit mehr 15 Jahren Data & Analytics-Organisationen in verschiedenen Industrien (u.a. Telefónica, Handelsblatt, XING, Fitness First, HRS). Schwerpunkte sind die Entwicklung von Digitalisierungs- und Datenstrategien und deren Operationalisierung mit cloudbasierten analytischen Plattformen und ML/AI-Lösungen. Er präsentiert seine innovativen Ergebnisse regelmäßig auf nationalen und internationalen Konferenzen.
Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/soenke-iwersen/
Dr. Matthias Platzer ist Berater mit Fokus auf Datenstrategie, Data Governance und Change Management. Er konnte bereits Erfahrungen mit Kunden aus verschiedenen Branchen sammeln, wie bspw. ÖPNV oder Mobilitätsdienstleistungen.
Seine Beratungsleistung zeichnet sich durch einen ganzheitlichen Ansatz aus, der den Menschen in den Mittelpunkt stellt und somit Data Strategy & Governance-Initiativen zu einem nachhaltigen Erfolg führt.
Dabei stützt er sich auf Projekterfahrungen, die sich über die gesamte Datenwertschöpfungskette erstrecken.
Vortrag Teilen
The successful establishment of low-code and self-service platforms in enterprises is not a guaranteed. Seamless collaboration among departments, management, IT, and security is crucial. The Müller Service Group has effectively tackled this challenge through the implementation of a governance framework. In this session, we will share best practices and insights from our journey towards successful governance. We will use the Microsoft Power Platform as a case study within the presentation as an example of a low-code platform at Müller.
Target Audience: Decision Makers, project leaders, IT-managers, IT-architects, data analysts, Chief Data Officers (CDOs), Chief Information Officers (CIOs), responsible individuals in Data & Analytics
Prerequisites: Basic Knowledge
Level: Basic
Extended Abstract:
In this session, we will first introduce the foundational framework crucial for the successful operation of a low-code platform, particularly within the context of the Microsoft Power Platform. Subsequently, we will delve into a detailed examination of opportunities and risks associated with operating such a platform, emphasizing the strategic significance of governance.
An additional emphasis during the presentation highlights the central role of IT in operating low-code and self-service platforms. Managers and domain experts will gain valuable insights with practical tips on successfully convincing and engaging their IT in the benefits of the low-code concept. This session provides a comprehensive overview of the potentials and challenges of low-code and self-service platforms.
Join us as we explore the transformative potential of this governance approach for Low-Code & Self-Service-Platforms.
For over 5 years, Deepak Sahu has been a software engineer at Mueller Service GmbH. With 13 years of experience, he crafts robust code for critical applications. As a Microsoft-certified expert, his focus spans Manufacturing Systems, Warehouse Automation, and financial instruments. Architecting and leading 'The Replay Software' showcases his prowess in optimizing Agile workflows. Proficient in ERP integration, web, desktop apps, and Azure DevOps, he excels in CI/CD processes. Establishing a Microsoft Power Platform Onboarding Center and proactive incident management underscore his commitment. His structured project management using Clarity PPM ensures quality and risk assessment.
Dominik Wuttke serves as the Principal Team Lead for Digitalization & Data Science at Marmeladenbaum GmbH. His expertise spans Predictive Analytics, Microsoft Power Platform, and Data Engineering. Having successfully delivered numerous projects in sectors such as medical technology, insurance, and energy, Dominik Wuttke combines leadership with technical prowess. As a seasoned lecturer, he shares his comprehensive knowledge at key conferences, solidifying his position as a principal team lead in the industry.
Florian Rappelt ist ein Senior Power Platform Architekt und zuständig für die Gestaltung und Entwicklung moderner Lösungen. Mit einem starken Fokus auf Governance zeichnet sich Florian darin aus, effiziente Prozesse zu gestalten, die den Erfolg von Organisationen vorantreiben. Seine Hingabe zur Befähigung der Nutzer zeigt sich in seinen umfassenden Schulungsinitiativen, die eine aktive und engagierte Maker-Community fördern. Florians Leidenschaft liegt darin, das Potenzial der Power Platform maximal auszuschöpfen. Dies beinhaltet auch die Erstellung von Chatbots mit Copilot Studio und die Anwendung von generativer KI.
Vortrag Teilen
Daten Exzellenz bei EWE wurde über ein Vorprojekt motiviert, um die Datenverfügbarkeit und – Qualität im Konzern zu erhöhen. Im Vortrag wird das Vorgehen und die detaillierte Vorgehensweise des sich anschließenden Daten Exzellenz-Projekts, die Bedeutung des Rollenmodell in einer virtuellen Datenorganisation zur effektiven Umsetzung, sowie die notwendigen Ergebnisartefakte präsentiert. Er richtet sich an Fachleute, Entscheidungsträger und Interessierte, die Einblicke in Strategien, Maßnahmen zur Steigerung im Umgang mit Daten gewinnen möchten.
Zielpublikum: Fachleute, Entscheidungsträger und Interessierte
Voraussetzungen: keine
Schwierigkeitsgrad: Basic
Extended Abstract:
Der Vortrag beleuchtet das Konzernprojekt "Daten Exzellenz" des Energieversorgers EWE, das auf die ganzheitliche Optimierung dreier wesentlicher Dimensionen abzielt: Geschäftsprozesse & Use Cases, Datenmanagement und Technische Systeme. Die Präsentation hebt die dringende Notwendigkeit dieser Maßnahmen im Energieversorgungssektor hervor, um die Herausforderungen der modernen datengetriebenen Landschaft zu bewältigen.
Im Fokus stehen die detaillierte Vorgehensweise des Projekts, das Rollenmodell der virtuellen Datenorganisation zur effektiven Umsetzung, sowie die erzeugten Ergebnisartefakte. Durch die Betrachtung eines exemplarischen Use Cases werden die konkreten Auswirkungen und Mehrwerte des Projektes aufgezeigt. Die Zuhörer erhalten Einblicke in die strategischen Entscheidungen, methodischen Ansätze und technologischen Lösungen, die EWE auf dem Weg zur Datenexzellenz umsetzt.
Der Vortrag vermittelt somit nicht nur einen Überblick über den Projektaufbau, sondern auch konkrete Einblicke in die Umsetzung auf operativer Ebene. Er richtet sich an Fachleute, Entscheidungsträger und Interessierte, die Einblicke in erfolgreiche Strategien und Maßnahmen zur Steigerung im Umgang mit Daten gewinnen möchten.
Thomas Richter ist seit 2002 in unterschiedlichen Funktionen im EWE-Konzern aktiv. Er hat Entwicklungsteams aufgebaut, Großprojekte verantwortet und widmet sich neben strategischen Fragestellungen und Trends nunmehr dem Thema: Daten Exzellenz.
Alina Robbers ist seit 2021 für das Team IT-Strategie & IT-Performance Management bei EWE, einem Energiedienstleister im Nordwesten Deutschlands tätig. Dabei beschäftigt sie sich mit Themen rund um den Bereich der strategischen IT-Planung mit dem derzeitigen Schwerpunkt auf der Frage, wie der EWE-Konzern datenexzellent wird.
Jens Walter ist IT-Innovationsmanager und Business Partner IT in der Konzern IT der EWE AG, einem Energiedienstleister im Nordwesten Deutschlands. Nach dem Studium der Physik stieg er früh in die IT ein. IBM (Greenock, Schottland) folgte Siemens (München), bei der er ebenfalls im Bereich Innovation in weltweiter Verantwortung tätig war.
Das Thema Daten interessiert ihn auf der strategischen Seite seit 2013, um die Herausforderungen der Energiewende zu bewältigen.
Sven Niedermeier ist IT-Portfoliomanager bei der EWE NETZ GmbH, einem der größten Verteilnetzbetreiber in Deutschland. Als Elektroingenieur befasste er sich eingehend mit dem Ausbau von Verteilnetzen in Mittel- und Niederspannung sowie deren Simulation und Berechnung. Hierdurch wuchs seine Begeisterung für Daten, was zu seinem Wechsel in die IT führte. Seit 2020 führt er das IT-Portfolio bei EWE NETZ und arbeitet daran mit, sein Unternehmen datenexzellent werden zu lassen.
Vortrag Teilen
How can Data Cataloguing, Modelling, DQ and other streams join forces to create business value? The speaker shares experience from a data vendor and a manufacturing business.
Target Audience: Data Professionals and decision makers with stakes in the value chain big picture
Prerequisites: Familiarity with Data Governance concepts (Catalogue, Quality, Integration etc.)
Level: Advanced
Extended Abstract:
Data Governance can contribute local optimizations to a company's value chain, such as better data discovery via a Data Catalogue, or quality-monitored and cleansed data sets. From a 30,000 ft Data Strategy view, it is even more desirable to connect the dots for business objects frequently reused among business processes and make them available as governed, quality-controlled, easily accessible Data Products.
The speaker successfully launched a Data Governance program in a company traditionally ranking metal higher than data and will share experiences on the ongoing Data Product journey:
- Identifying scope
- Cataloging technical metadata
- Modeling a logical layer
- Managing sensitive data in a hybrid architecture
- Simplifying cross-system access
Dominik Ebeling is a CDMP-certified data and technology manager with more than ten years of international experience in start-up and enterprise contexts. He is passionate about building and developing successful teams, optimizing global processes and structures, and turning data into solutions for customer problems. In his current role as Head of Data Governance at Rolls-Royce Power Systems, Dominik is developing a long-standing manufacturing business into a data-driven organization.
Vortrag Teilen
Die Auswirkungen der Künstlichen Intelligenz durchdringen sämtliche Bereiche unserer Gesellschaft, von der Prozessautomatisierung bis zur personalisierten Datenanalyse. Die EU reagiert darauf mit dem AI-Act, einem umfassenden rechtlichen Rahmen, der einheitliche Qualitätsstandards für KI-Systeme etabliert. Die Umsetzung stellt für viele Unternehmen eine bedeutende Herausforderung dar. Das 'AI-Excellence-Framework' präsentiert Handlungsfelder für eine effektive KI-Governance im Sinne des AI-Acts.
Zielpublikum: Data Governance Manager, Compliance Officer, CDO, Data Scientists
Voraussetzungen: Grundlegende Datenkenntnisse
Schwierigkeitsgrad: Basic
Jeannette Gorzala ist eine führende Persönlichkeit, Rechtsberaterin und Investorin auf dem Gebiet der künstlichen Intelligenz. Sie hat auf der ganzen Welt über KI gesprochen, berät über die globale KI-Politik und erstellt Leitfäden für Unternehmen, um sie über den Aufbau vertrauenswürdiger KI-Projekte zu informieren.
Vortrag Teilen