The times given in the conference program of TDWI München digital correspond to Central European Time (CET).
By clicking on "EVENT MERKEN" within the lecture descriptions you can arrange your own schedule. You can view your schedule at any time using the icon in the upper right corner.
Nach einem erfolgreichen PoC werden viele ML-Vorhaben aus Gründen des zeitlichen Aufwandes nicht produktiv umgesetzt. Im Bereich der Prozesssteuerung von Großanlagen können jedoch Optimierungen durch Machine Learning immense Kosteneinsparungen und Produkteffizienz bedeuten. Wir beschreiben den Prozess der Einführung von MLOps in der Azure Cloud zur Steuerungsoptimierung Hunderter Luftzerlegungsanlagen. Wir gehen auf Herausforderungen und Lösungsansätze ein, um MLOps in der Cloud parametrisierbar, skalierbar und überschaubar einzuführen.
Zielpublikum: Data Scientists, DevOps Engineers, Software Engineers, Cloud-Architekt:innen, Entscheider:innen, Project Information Manager
Voraussetzungen: Grundwissen Software Engineering, Machine Learning und DevOps
Schwierigkeitsgrad: Fortgeschritten
Extended Abstract:
Die Optimierung von Großanlagen wie Luftzerlegungsanlagen ist von zentraler Bedeutung, um langfristig und lieferkettenübergreifend Kosten zu reduzieren und die Produkteffizienz zu erhöhen. Die Implementierung von anlagenspezifischen Advanced Process Controls ist jedoch teuer, aufwendig und sehr zeitintensiv. Mittels Machine-Learning-Verfahren, insbesondere dem Reinforcement Learning, kann dieser Zeitaufwand auf gerade einmal einen Monat reduziert werden. Das resultierende Machine-Learning-Modell gleicht einem digitalen Zwilling der Anlage, welcher für die Simulation und Optimierung diverser Einstellungen für die Anlage nützlich ist. Ziel nach einem erfolgreichen PoC ist die vollautomatisierte und skalierbare Operationalisierung der gesamten Infrastruktur und Daten-Pipeline. Die Umsetzung dieses Projektes erfolgte aus Gründen von verfügbarer Hardware, Firewall-Richtlinien, Verfügbarkeit und Wartung der Systeme in der Cloud und nicht on-premise.
Dieser Vortrag betrachtet die Migration des Machine-Learning-Projektes von on-premise in die Microsoft Cloud. Wir zeigen, welche Herausforderungen bei der Umsetzung eines skalierbaren MLOps-Prozesses auftreten können und wie diese in diesem Projekt gelöst wurden.
Malwin Weiler ist als Trainee bei Linde Engineering eingestiegen und nun als Advanced Automation Engineer zuständig für Cloud-optimierte Lösungen. Er ist für die Automatisierung und Skalierung des neuen ML-basierenden Model Predictive Control für Luftzerlegungsanlagen zuständig.
Melanie B. Sigl ist Managing Consultant und leitet den Bereich Machine Learning bei PRODATO Integration Technology GmbH. Zusätzlich ist sie Lehrbeauftragte für 'Knowledge Discovery in Databases' am Lehrstuhl für Datenmanagement an der FAU Erlangen-Nürnberg.
Vortrag Teilen