The times given in the conference program of TDWI München digital correspond to Central European Time (CET).
By clicking on "EVENT MERKEN" within the lecture descriptions you can arrange your own schedule. You can view your schedule at any time using the icon in the upper right corner.
Mit Blick auf die zunehmende Durchdringung von AI in den Geschäftsmodellen, regulatorischen Anforderungen wie dem EU-AI-Act und fehlendem Vertrauen der Kunden in AI stellt sich die Frage, wie Unternehmen dem gerecht werden. Welche Herausforderungen stellen sich bei der Umsetzung? Was heißt das für Modelle, Datenerhebung und Datenvorbereitung? Wir geben einen Einblick in das Thema Responsible AI, erläutern Herausforderungen und geben konkrete Ansätze für die Umsetzung anhand praktischer (Daten-)Beispiele.
Zielpublikum: Data Science und AI Praktizierende und Verantwortliche, Complianceverantwortliche, C-Level, Management, Datenmanagement, Data Governance Verantwortliche, Innovationsfördernde
Voraussetzungen: Basisverständnis von Künstlicher Intelligenz bzw. Machine Learning
Schwierigkeitsgrad: Einsteiger
Der studierte Wirtschafts- und Organisationswissenschaftler (M.Sc.) Ronny Kant fördert seit über 7 Jahren die digitale Transformation - sowohl organisatorisch als auch technisch bei unterschiedlich großen Kunden. In seiner Rolle als Manager und Projektleiter beschäftigt er sich mit regulatorischen Anforderungen, Data Science, Data Governance sowie Organisationsentwicklung und verantwortet aktuell ein Team von über 20 Experten:innen in den Bereichen Data Science, BI und Data Management.
Marc-Nicolas Glöckner ist seit neun Jahren für die PPI AG als Berater im Bereich Banking tätig. Als Senior Manager berät er seine Kunden vornehmlich in den Bereichen statistische Modellierung und KI. Fachliche Schwerpunkte sind dabei vor allem Kreditrisiko und Fraud Detection. Vor kurzem hat er eine Artikelserie zum Thema Explainable AI veröffentlicht.
Vortrag Teilen