PROGRAMM

Die im Konferenzprogramm der TDWI München 2022 angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.

 

Hier können Sie die Programmübersicht der TDWI München 2022 mit einem Klick als PDF herunterladen.

Track: #AI / out of the box

Nach Tracks filtern
Nach Themen filtern
Alle ausklappen
  • Mittwoch
    22.06.
, (Mittwoch, 22.Juni 2022)
09:00 - 10:30
Mi 4.1
ROOM K3 | Deepfakes am Limit - Fake-Videocalls mit KI

Stellen Sie sich das mal vor: Jemand nimmt mit einem digitalen Ebenbild Ihrer Person an einem Live-Videoanruf teil. Heutige Echtzeit-Deepfake-Technologie erlaubt es, mit bloßem Auge kaum noch unterscheidbare 'Doppelgänger' einer Person zu erzeugen. TNG forscht seit 2019 intensiv an der KI rund um Echtzeit-Deepfakes und entwickelt diese ständig weiter. In dem Vortrag zeigen wir die verschiedenen Evolutionsschritte der Deepfake-Technologie inkl. Live-Demos, beginnend mit dem 'Ur'-Deepfake und…

Mehr lesen
Martin Förtsch, Thomas Endres, Jonas Mayer
Vortrag: Mi 4.1
11:00 - 12:30
Mi 4.2
ROOM E101/102 | World Café: Wie lässt sich der Durchdringungsgrad von KI in Unternehmen erhöhen?
Klaus-Dieter Schulze
Vortrag: Mi 4.2
14:00 - 15:15
Mi 4.3
ROOM E119 | Betrugserkennung in der gesetzlichen Krankenversicherung

Der Einsatz von Künstlicher Intelligenz zur Betrugserkennung bei Heilmittel- und Pflegeleistungen in der gesetzlichen Krankenversicherung. Von der Pseudonymisierung und Digitalisierung der Abrechnungsbögen bis zur Analyse, Auswertung und Darstellung der Anomalien - Ein Projektbericht! 

Zielpublikum: Management, Data Scientists, Data Engineers 
Voraussetzungen: Experience, Curiosity 
Schwierigkeitsgrad: Fortgeschritten

Mehr lesen
ROOM E119 | How We Covered Concept Drifts In Public Transport Lockdowns

The Coronavirus lockdowns altered public transport occupation data. Ultimately, these changes in occupation data are perfect examples of sudden concept drifts that can be blockers in most machine learning deployments. We managed to overcome the obstacles by developing methods and engineering features that allowed us to adjust forecasts based on unforeseen changes in the occupation data. In this talk, we give insights into our journey from idea development to the ways how we overcame the…

Mehr lesen
Maximilian Harms, Jürgen Hirsch
Tim Frey

Zurück