Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download
Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.
Der TDWI StackTalk ist ein Format, bei dem wir anhand von echten Analytics-Lösungen aus der Praxis folgende Fragen beantworten möchten:
Im Rahmen der TDWI München digital wird der Weg von der Einzel- zur Serienfertigung in der Datenanalyse bei Daimler Trucks betrachtet und gemeinsam mit Marco Sturm (Data Engineer und Data Scientist bei Daimler Trucks) besprochen.
Zielpublikum: Data Architects, Entscheider
Voraussetzungen: Keine
Level: Basic
Julian Ereth is a researcher and practicioner in the area of Business Intelligence and Analytics. As a solution architect at Pragmatic Apps he plans and builds analytical landscapes and custom software solutions. He is also enganged with the TDWI and hosts the TDWI StackTalk.
Machine Learning ist auf dem Vormarsch und hochgradig von Daten abhängig. Das Thema ist omnipräsent und wird aber meist entweder sehr abstrakt oder aber sehr algorithmisch, daten-zentriert, auch code-nah beleuchtet. Der Blick auf die Gesamtarchitektur von Systemen, die ML enthalten, fehlt dabei oft. Unser Vortrag unterstützt Softwarearchitekten und Data Scientists dabei, den Überblick zu behalten, die wesentlichen Fragen zu stellen, besser zusammenzuarbeiten und somit bessere Architekturen für Systeme basierend auf Machine Learning zu designen.
Zielpublikum: Software Architect, Project Leader, Data Scientist
Voraussetzungen: Grundlegendes Verständnis zu Softwarearchitektur
Schwierigkeitsgrad: Fortgeschritten
Extended Abstract:
Mit Data Lakehouse und Data Mesh verbreiten sich im Moment neue Paradigmen und Architekturmuster für analytische Fragestellungen in Unternehmen unterschiedlichster Branchen. Die beiden Ansätze verfolgen hierbei sehr konträre Zielsetzungen und verheißen gleichzeitig die nächste Evolutionsstufe analytischer Architekturen zu sein.
Im Rahmen des Vortrags werden die beiden Architekturmuster und deren Intensionen gegenübergestellt und anhand praktischer Projekterfahrung eingeordnet.
Zielpublikum: Enterprise Architects, Data Architects, DACC / BICC Manager, Data Engineers, Data Scientists, Data Consumers
Voraussetzungen: Grundverständnis über heutige Architekturen im Data & Analytics-Umfeld und den daraus resultieren Herausforderungen für die involvierten Stakeholder.
Schwierigkeitsgrad: Fortgeschritten
Steffen Kandler studierte Wirtschaftsinformatik an der Technischen Hochschule Mittelhessen. Nach seinem Einstieg bei INFOMOTION arbeitet er als BI-Entwickler und Architekt mit Schwerpunkten im Data Management, Data Warehousing sowie Data Visualization. Aktuell befasst er sich mit dem Einfluss der Digitalen Transformation auf Data & Analytics und den Facetten von modernen, skalierbaren und flexiblen Analytics-Plattformen sowie den zugehörigen Architekturen, Technologien und Methoden.
Kafka and Kafka Streams have emerged as the de facto standard for scalable, high volume and low-latency real time data processing in the industry. Complex event processing is concerned with the detection of patterns in raw events and their transformation to higher level events that are more business relevant. This talk shows how to implement scalable, fault tolerant and declarative complex event processing based on Kafka Streams.
Target Audience:Data Engineer, Data Scientist, Data Architect
Prerequisites: Basic understanding of real time data processing and Apache Kafka.
Level: Advanced
Extended Abstract:
Kafka and Kafka Streams have emerged as the de facto open source standard for real time, low latency and high throughput data integration in a large variety of industries. Besides providing traditional operations such as grouping, aggregations and table-table joins, Kafka Streams treats streams of data as first class citizens and offers some unique features geared at real time data wrangling such as aggregation of data across different types of time windows, real time data enrichment, and joins between streams of data. While both types of operations have emerged from the ambit of relational databases, the complex event processing community has focused their attention on declarative, pattern based recognition of business relevant events from lower level, raw events. Examples for operations supported by complex event processing are sequences, negation, conjunction, disjunction and repetition. This talk shows how sequences, negation and regular expressions on event streams can be implemented in a scalable and fault tolerant manner based upon the Kafka Streams DSL and the Kafka Streams Processor API. The provided examples are relevant to use cases such as detection of shoplifting, security systems, operations of production lines, and online shopping.
Das Modern Data Warehouse (MDWH) gilt als DAS Zukunftskonzept für die digitale Transformation. Denn: Dank Cloud-Technologien kann das MDWH auf ganz unterschiedliche Anforderungen vom Reporting bis zur KI angepasst werden. Aber wie sieht eine Basisarchitektur aus? Welche Anpassungen sind bei verschiedenen Use Cases notwendig? Jens Kröhnert liefert die Antworten. Vor den Augen des Publikums baut er ein MDWH in der Cloud auf und spielt konkrete Einsatzszenarien durch. Die Teilnehmer werden als Lieferant für Streaming-Daten unmittelbar involviert.
Zielpublikum: Alle Personengruppen im Unternehmen, die mit Daten arbeiten
Voraussetzungen: Basiskenntnisse
Schwierigkeitsgrad: Fortgeschritten
Extended Abstract:
GLIEDERUNG:
Einführung in das MDWH
Kunden-Case 'Aluminium-Fertigung'
Step by Step: Aufbau eines MDWH
Jens Kröhnert verfügt über langjährige Erfahrung in der Planung und Umsetzung von Digitalisierungsprojekten. Als Innovationsexperte hat er für ORAYLIS immer die neuesten Technologien und Entwicklungen im Blick.