Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download
Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.
Die systematische Nutzung von Freitexten bietet ein großes Potenzial für die Gewinnung neuer Erkenntnisse oder die Automatisierung von Prozessen, das Unternehmen verstärkt nutzen wollen. Der Workshop soll Datenanalysten den Einstieg in das Text Mining erleichtern. Anhang konkreter Anwendungsbeispiele werden die nötigen Schritte und aktuelle Analyse- und maschinelle Lernverfahren erläutert. Für Datenvorbereitung und das Mining wird dabei Python genutzt, die Auswertung und Visualisierung der Ergebnisse erfolgt mit PowerBI.
Zielpublikum: Data Engineers, Data Analysts, Project Leaders
Voraussetzungen: Grundlegendes Verständnis von Data Mining/Machine Learning sowie elementare Programmierkenntnisse (nicht notwendigerweise in Python) werden vorausgesetzt. Zum Mitmachen sollten Python (Anaconda + zusätzlich spaCy) sowie PowerBI auf dem Laptop installiert sein.
Schwierigkeitsgrad: Fortgeschritten
Extended Abstract:
Die analytische Erschließung von Texten ist für viele Unternehmen der erste Schritt in die Welt unstrukturierter Daten. Die Anwendungsgebiete sind vielfältig und reichen von der Auswertung von Kunden-Kommunikation für Marketing-Zwecke bis zum automatisierten Routing von Dokumenten oder der Priorisierung von Service-Requests.
Im Workshop wird anhand von Fallballspielen durchgespielt, wie ausgehend von einer Fragestellung ein Modell erstellt, evaluiert und visualisiert werden kann. Dabei wird gezeigt,
- wie Datenvorbereitung mit modernen NLP-Bibliotheken wie spaCy funktioniert
- wie sich schnell und elegant statistische Analysen auf den aufbereiteten Daten in Python und PowerBI umsetzen lassen
- wie aus Texten Feature-Vektoren erzeugt werden
- wie mit maschinellen Lernverfahren Texte klassifiziert und gruppiert werden können
- wie die Stärken und Schwächen der Modelle mit PowerBI transparent gemacht werden können
- wie Anwender selbst mit den Ergebnissen in PowerBI arbeiten können.
Am Ende werden Sie ein solides Grundverständnis davon haben, wie der Analyse-Prozess abläuft, welche Potenziale sich bieten und welche Fallstricke dabei lauern.