Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download
Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.
ZF plant Saarbrücken, Germany, manufactures around 11,000 transmissions per day. With 17 basic transmission types in 700 variants, the plant manages a large number of variants. Every transmission consists of up to 600 parts. An AI project was started to get reliable + fast results on root cause discovery. Speed is important because production runs 24 hours/7 days a week. The target is to reduce waste in certain manufacturing domains by 20%. The key success factor is the fast detection mechanism within the production chain delivered by AI.
Target Audience: Production manager, quality manager, CDO, CIO
Prerequisites: none
Level: Basic
Extended Abstract:
The ZF plant Saarbrücken, Germany, manufactures around 11,000 transmissions per day. With 17 basic transmission types in 700 variants, the plant manages a large number of variants. Every transmission consists of up to 600 parts. Each transmission is 100% tested in every technical detail before shipment. The plant Saarbrücken is a forerunner and lead plant in innovative Industry 4.0 technologies. Therefore, activities were started to tackle one significant challenge, which is caused by the enormous variant diversity: Finding root-causes for unsuccessful end of line testing. The management of the complexity is a big challenge because transmission parts can be produced in a huge number of variant processes. Process experts from each domain, like quality and testing, assembly departments and manufacturing units, had to spend significant time in analyzing influencing factors for malfunctioning and deciding on best action to prevent end of line test failures.
Therefore, an AI project was started with the objective to get reliable and fast results on root cause discovery. Speed is important because production runs 24 hours / 7 days a week. The sooner the real reasons for malfunctions are discovered, the sooner activities can be implemented to avoid bad quality. This saves a lot of time and reduces significant waste. The Target is to reduce waste in certain manufacturing domains by 20%. The key success factor is the fast detection mechanism within the production chain delivered by AI.
Complex root-cause findings can be reduced from several days to hours.
ZF's intention with the digitalization approach is to deliver fast information to the people who are responsible for decision processes to keep a plant in an optimal output with high quality products. A self-learning AI solution Predictive Intelligence from IS Predict was used to analyze complex data masses from production, assembly, and quality to find reliable data patterns, giving transparency on disturbing factors/factor combinations. For training algorithms, end to end tracing data was used, made available in a data lake.
Britta Hilt beschäftigt sich seit 2011 mit der Anwenderseite von Künstlicher Intelligenz. Sie ist Mitbegründerin und Geschäftsführerin der KI-Firma IS Predict, die sich einen Namen gemacht durch ihre Automatisierung von Data Science sowie durch erklärende KI. Vor der Gründung von IS Predict war sie über 15 Jahre in einer internationalen IT-Firma (IDS Scheer / Software AG) tätig, zuletzt als Director verantwortlich für Product Management und Solution Marketing.