Hinweis: Die aktuelle TDWI-Konferenz finden Sie hier!

PROGRAMM

Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.

Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download

Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.

Machine Learning: Bildverarbeitung mithilfe von YOLO/Python

Ein Tischfußball wurde mittels Kamera, Sensoren und Computer digitalisiert und liefert nun Spielanalysen in Echtzeit. Der interaktive Workshop, aufgeteilt in einen theoretischen und einen praktischen Teil, erläutert und erklärt anschaulich, wie hier eine 'lernende Bildverarbeitung' mittels Algorithmus YOLO (You Only Look Once) und Skriptsprache Python programmiert wurde. Darüber hinaus gibt der Workshop einen Ausblick auf die Anwendung von Bilderkennung in einem Business Kontext.

Zielpublikum: alle, die an Machine Learning, Bildverarbeitung und Objekterkennung interessiert sind, Entwickler
Voraussetzungen: Scripting-Grundlagen in Python und statistisches Grundwissen sind von Vorteil und natürlich Interesse
Schwierigkeitsgrad: Fortgeschritten

Extended Abstract:

Vorbemerkung: 

Zur anschaulichen Erklärung von Themen wie KI, Machine Learning oder Datastreaming hat PROCON IT einen Kickertisch mit Highspeedkamera und Sensoren versehen und ihn so digitalisiert. Dieser digitalisierte Kicker ist nun in der Lage, das Spiel live zu verfolgen und verschiedene Dinge ebenfalls live auszuwerten, bspw. wird eine Headmap gezeigt, der Spielstand wiedergegeben, die Schussgeschwindigkeit bestimmt.

Wie kann ein System über Bilder einer Highspeedkamera, die es von einem Tischfußballspiel macht, in Echtzeit Daten wie Ballgeschwindigkeit oder eine Headmap der aktuellen Partie generieren? Das System muss gelernt haben, was auf dem Bild der Ball ist, was die Spieler sind und zu welchem Team die Spieler gehören. Der interaktive Workshop führt nach einer kurzen theoretischen Einführung die Teilnehmer mitten in die Praxis der Bildverarbeitung. Gemeinsam werden u.a. Bilder klassifiziert, ein Modell trainiert und die Ergebnisdaten ausgewertet. Die Teilnehmer lernen dabei, wie dies mithilfe der Skriptsprache Python und dem Algorithmus YOLO in der Praxis umgesetzt werden kann. Gemeinsam wird anschließend die Möglichkeiten von Bilderkennung in einem Business Kontext erörtert.

Robea Araujo von Borries absolvierte ihren Master in Wirtschaftsinformatik an der Humboldt-Universität zu Berlin. Als Consultant mit den Spezialgebieten Big Data Engineering und Machine Learning berät sie kompetent Kunden insbesondere bei der Datenaufbereitung, der Verarbeitung massiver Datenmengen sowie bei unterschiedlichen Anwendungsfällen im Machine Learning-Kontext.
Elias Jebabli ist seit Abschluss seines Masterstudiums der Mathematik an der Universität Augsburg und an der TU München als Consultant aktiv. Er hat sich auf die Bereiche Big Data-Engineering und Machine Learning im Business-Umfeld spezialisiert. In Kundenprojekten insbesondere in der Automobilindustrie sammelte er zudem umfassende Erfahrungen in den Bereichen Datenvisualisierung, Datentransformation und -aufbereitung sowie bei der Modellierung von Machine Learning-Projekten.
Robea Aurojo von Borries, Elias Jebabli
Track: Workshop
10:10 - 12:30
Vortrag: Mo 5.1

Vortrag Teilen