Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download
Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.
USE CASE: Siemens AG
- Ausgangslage: Nicht ausreichend zuverlässiger Forecast für Liefer- und Bestandsoptimierung
- Vorgehen: Cross-Industry-Standard-Prozess für Data-Mining-Projekte:
(a) Erstellung von datengetriebenen Kurz- und Langfristprognosen mit Machine Learning
(b) Identifikation von Einflüssen externer Informationen
(c) Schneller Projekterfolg durch Predictive-Analytics-Plattform
- Ergebnis: Detailgenaue Planung auf Abruf
(a) Signifikante Verbesserung der Prognosen
(b) Optimierung von Liefertreue und Lagerkosten
Zielpublikum: Data Scientist, Controller, Planner, Finance, DWH Architects, Project Manager, CFO
Voraussetzungen: Basiswissen
Schwierigkeitsgrad: Anfänger
Extended Abstract:
Die Verkaufsprognose bei Siemens wies eine geringe Zuverlässigkeit mit negativen Auswirkungen auf den Lagerbestand und die Liefertreue auf. In einem dreistündigen Workshop evaluierten avantum und Siemens Möglichkeiten der Verbesserung, woraufhin sich Siemens für die Implementierung von ML-Algorithmen zur Prognose der Absatzmengen entschied.
Gemeinsam mit den Logistikexperten der Anlage entwickelte avantum ein prädiktives Modell. Dieses wurde mit der Softwarelösung APOLLO erstellt, die auf IBM SPSS Modeler basiert. Als Ergebnis der Modellnutzung konnte Siemens die Zuverlässigkeit seiner Prognose um mehr als 50 % erhöhen und somit Working Capital reduzieren und Liefertreue deutlich steigern.