Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download
Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.
Die Beantwortung geschäftsrelevanter Fragestellungen auf Basis von Daten und intelligenten Analysen wird im digitalen Zeitalter zunehmend zum 'Game Changer'. Dies trifft insbesondere auf komplexe mehrstufige Vertriebsorganisationen wie in der Automobilindustrie zu. Hierzu ist es erforderlich einerseits datenbasierte Entscheidungssysteme zur erfolgreichen Vertriebs- und Ergebnissteuerung aufzubauen und anderseits eine Performance-Kultur über die gesamte Organisation bis zum Handel zu etablieren.
Zielpublikum: Analytics Manager, Data Scientist, BI & Big Data Experten, Automotive Interessierte, Verantwortliche für Digitalisierung, etc.
Voraussetzungen: Keine
Schwierigkeitsgrad: Fortgeschritten
Extended Abstract:
Die Beantwortung geschäftsrelevanter Fragestellungen auf Basis von Daten und intelligenten Analysen wird im digitalen Zeitalter zunehmend zum 'Game Changer'. Dies trifft insbesondere auf komplexe mehrstufige Vertriebsorganisationen wie in der Automobilindustrie zu.
Hierzu ist es erforderlich einerseits datenbasierte Entscheidungssysteme zur erfolgreichen Vertriebs- und Ergebnissteuerung aufzubauen und anderseits eine Performance-Kultur über die gesamte Organisation bis zum Handel zu etablieren.
Eingebettet in das konsequent implementierte Performance Management System stellt BMW Deutschland mit C1 Advanced Analytics in der Breite und Tiefe über alle Vertriebsstufen passgenaue Lösungen bereit, um den Entscheidern bis hin zum Point of Sales einerseits maximale Transparenz über die aktuelle und künftig zu erwartende Geschäftsentwicklung zu geben. Andererseits werden auf Basis von Daten systematisch Entscheidungen getroffen und Maßnahmen zur Performance-Steigerung implementiert und stringent nachverfolgt. Die Beherrschbarkeit und Kosteneffizienz im Betrieb werden über automatisierte Abläufe wie z.B. die Konsolidierung und Harmonisierung von Händler-Reports professionalisiert. Dies führt hat über neue Berufsbilder in Kombination mit einer zielgerichteten Befähigung der Mitarbeiter in der Organisation gesamthaft zu einem 'New Way of Working' sowie zu gesteigerten Nutzung von Marktpotenzialen geführt. Gleichermaßen konnten über die Konsolidierung von Data Assets sowie eine strikte Data Governance erhebliche Effizienzsteigerungen realisiert werden. Letzteres hat sich insbesondere auch in der Corona-Krise bewährt.
Die technische Lösung basiert auf einer Cloud Data Plattform, in der alle relevanten Daten (strukturiert und unstrukturiert) so zusammengeführt werden, dass mit Hilfe von modernen Frontendlösungen alle relevanten Informationen zeitgerecht bereitgestellt. Teilweise werden bereits KI-Funktionalitäten genutzt, um beispielsweise die Allokation von Vertriebsförderungsmaßnahmen zu optimieren. Dafür werden sehr große Datenmengen mit komplexen Machine-Learning-Methoden verarbeitet, die Ergebnisse jedoch für die Anwender in benutzerfreundlicher Form im Frontend aufbereitet.
Seit 2018 wurde die Transformation zu einer datenbasierten Vertriebs- und Ergebnissteuerung im Markt systematisch vorangetrieben und seitdem mit über 80 umgesetzten Use Cases stetig ausgebaut. Die Geschäftsbereiche Finanzen/ Strategie (Weiterentwicklung zur Rolle als 'Performance Manager'), Vertrieb, Customer Support sowie und Marketing werden datenbasiert über das Performance Management System eng miteinander verzahnt und in die Lage versetzt, noch zielgerichteter zu steuern, um identifizierte Marktopportunitäten für die Vertriebsregion BMW Deutschland konsequent zu heben.
Im Vortrag werden der erfolgreiche Weg hin zu einem datenbasierten Arbeiten skizziert sowie die technische Architektur und beispielhaft ein Advanced Analytics Use Case aufgezeigt.
Vortrag Teilen