Hinweis: Die aktuelle TDWI-Konferenz finden Sie hier!

PROGRAMM

Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).

Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.

Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download

Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.

Ein paar Millionen Worte später: Text Analytics in der Praxis

KI ist in der Fachwelt gerade in aller Munde. Ab was ist Chance, was ist Hype? Wir setzen Natural Language Processing seit vielen Jahren in der Qualitätssicherung von Anforderungen und Tests ein. Beispiele sind die automatische Prüfung von Anforderungen und Testgenerierung aus User Stories. In diesem Vortrag zeigen wir an konkreten Beispielen auf, was möglich ist und wo die Grenzen sind. Damit wollen wir die großen Chancen der Textanalyse aufzeigen, ohne in Buzzwords zu verfallen.

Zielpublikum: Decision Makers, Business Analysts, Data Engineers
Voraussetzungen: Keine
Schwierigkeitsgrad: Anfänger

Extended Abstract:
In Wissenschaft und Praxis herrscht Revolutionsstimmung. Sprachassistenten simulieren natürliche Gespräche, Wetter- und Sportberichte werden automatisch generiert ohne, dass ein Mensch beteiligt ist, Systemüberwachung funktioniert automatisch per Anomalie-Erkennung oder man schiebt gleich das ganze Word-Dokument in einen automatischen Übersetzer. Der Eindruck von unendlichen Möglichkeiten drängt sich auf auch in der Qualitätssicherung. Aber wie viel von diesen Ansätzen funktionieren in der Praxis wirklich oder ist die Revolutionsstimmung tatsächlich nur eine Goldgräberstimmung?

Wir setzen Natural Language Processing (NLP) Techniken seit vielen Jahren bei mittlerweile über 60 Projekten in Automotive und Versicherungsbereich täglich zur Qualitätssicherung von Software ein. Täglich werden Millionen von Worten Text durch unsere Analysen gejagt. Beispiele sind die automatische Prüfung von Anforderungen, Testgenerierung aus User Stories oder automatisierte Traceability Analysen. Weiterhin machen wir immer wieder Studien mit unterschiedlichsten Machine-Learning- bzw. Artificial-Intelligence Ansätzen (ML/AI) um herauszufinden, ob der Stand der Technik reicht, um in der Qualitätssicherung produktiv eingesetzt zu werden.

Dabei ergibt sich ein etwas differenzierteres Bild davon, was mit NLP, ML und AI möglich ist. In diesem Vortrag zeigen wir drei Dinge auf:

Erstens, was ist der Stand der Technik? Welche Fähigkeiten bieten moderne Ansätze und welche Rollen in der Qualitätssicherung können wie profitieren.

Zweitens, wo sind dabei die Herausforderungen? Bei der Anwendung der Methoden zeigen sich schnell technische Herausforderungen (z.B. Echtzeitfähigkeit), Herausforderungen mit Daten (z.B. Grammatikanalysen auf englische Texte von Nicht-Muttersprachlern) und Herausforderungen auf der menschlichen Ebene (z.B. Akzeptanz).

Drittens, wo sind die Grenzen? In einer wissenschaftlichen Studie haben wir ganz konkret an Unternehmensguidelines analysiert, welche Aspekte von Qualität automatisiert prüfbar sind und welche nicht. Aus dem, was nicht möglich ist, lässt sich eine einfach anwendbare Checkliste erstellen, die mir sagt, welche Themen ich sinnvoll angehen kann und wovon ich die Finger lassen muss.

Dieser Vortrag zeigt Entscheidern und Anwendern also die großen Chancen der Textanalyse auf, ohne in unrealistische Erwartungen oder gar Buzzwords zu verfallen.

Jannik Fischbach hat Wirtschaftsinformatik an der TU München studiert und promoviert aktuell in Informatik an der Universität zu Köln. In seinen Forschungsarbeiten entwickelt er NLP Methoden, um kausale Relationen aus Anforderungen zu extrahieren und diese zur  automatisierten Testgenerierung zu nutzen. Neben seiner Promotion arbeitet er als Consultant bei Qualicen und unterstützt Unternehmen  bei der Optimierung ihrer Testprozesse und der Einführung von modellbasierten Testen. Zu diesen Themen hält er regelmäßig Vorträge für  Forschung und Industrie.
Jannik Fischbach
11:00 - 12:10
Vortrag: Mi 2.3

Vortrag Teilen