Die im Konferenzprogramm der TDWI München digital 2021 angegebenen Uhrzeiten entsprechen der Central European Time (CET).
Per Klick auf "VORTRAG MERKEN" innerhalb der Vortragsbeschreibungen können Sie sich Ihren eigenen Zeitplan zusammenstellen. Sie können diesen über das Symbol in der rechten oberen Ecke jederzeit einsehen.
Für alle, die eine alternative Darstellung bevorzugen bieten wir unser Programm-PDF an:
» Zum PDF-Download
Gerne können Sie die Konferenzprogramm auch mit Ihren Kollegen und/oder über Social Media teilen.
Stellen Sie sich das mal vor: Sie stehen vor einem Spiegel, sehen aber nicht mehr in Ihr eigenes Gesicht, sondern in das von Barack Obama oder Angela Merkel. In Echtzeit wird Ihre eigene Mimik auf das fremde Gesicht übertragen. Dem TNG Innovation-Hacking-Team ist es gelungen, einen solchen Prototypen zu erstellen und in Echtzeit das Gesicht einer Person auf beliebige andere Gesichter zu übertragen. Die Grundlage hierfür ist der sogenannte 'Deep Fake'-Ansatz.
Zielpublikum: Data Engineer, Data Scientist, Project Leader, Decision Makers
Voraussetzungen: Basic AI Knowledge
Schwierigkeitsgrad: Anfänger
Extended Abstract:
Stellen Sie sich das mal vor: Sie stehen vor einem Spiegel, sehen aber nicht mehr in Ihr eigenes Gesicht, sondern in das von Barack Obama oder Angela Merkel. In Echtzeit wird Ihre eigene Mimik auf das fremde Gesicht übertragen.Dem TNG Innovation-Hacking-Team ist es gelungen, einen solchen Prototypen zu erstellen und in Echtzeit das Gesicht einer Person auf beliebige andere Gesichter zu übertragen. Die Grundlage hierfür ist der sogenannte 'Deep Fake'-Ansatz. Durch die Anwendung neuronaler Netze werden hier Gesichter in der Videoeingabe erkannt, übersetzt und zurück in die Videoausgabe integriert. Durch diese Technik ist es möglich, täuschend echte Imitationen auf andere Personen zu projizieren. Zum Einsatz kamen dabei in Keras trainierte Autoencoder-Netze, sowie verschiedene Algorithmen zur Gesichtserkennung.
In diesem Vortrag geben Thomas Endres und Martin Förtsch eine unterhaltsame und sehr anschauliche Einführung in die Welt der Deepfakes in Echtzeit. Dabei gehen sie insbesondere auf die Techniken im Bereich des Deep Learning ein, die bei dieser Anwendung zum Einsatz kommen. Mehrere Live-Demonstrationen runden das Erlebnis ab.
Martin Förtsch ist ein IT-Berater der TNG Technology Consulting GmbH mit Sitz in Unterföhring bei München und studierte Informatik. Seine Arbeitsschwerpunkte sind Agile Development (hauptsächlich) in Java, Suchmaschinentechnologien, Information Retrieval und Datenbanken. Als Intel Software Innovator und Intel Black Belt Software Developer ist er darüber hinaus intensiv in der Entwicklung von Open-Source-Software im Bereich der 3D-Kameratechnologien und dem Internet of Things involviert. Darüber hinaus hält er zahlreiche Vorträge auf nationalen und internationalen Konferenzen zu den Themen Künstliche Intelligenz, Internet der Dinge, Augmented Reality und Test-Driven Development. Er wurde u.a. mit dem Oracle JavaOne Rockstar ausgezeichnet.
Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/martin-foertsch/
Thomas Endres ist studierter Informatiker (TU München) und leidenschaftlicher Softwareentwickler. Als Intel Software Innovator und Black Belt präsentiert er weltweit neue Technologien wie KI, AR/VR und Robotik. Dafür erhielt er unter anderem einen JavaOne Rockstar-Award.
Mehr Inhalte dieses Speakers? Schaut doch mal bei sigs.de vorbei: https://www.sigs.de/experten/thomas-endres/
Jonas Mayer arbeitet im Innovation Hacking Team der TNG Technology Consulting und beschäftigt sich dort hauptsächlich mit der Entwicklung von innovativen Showcases und Prototypen in Soft- und Hardware. So arbeitete er seit 2018 an verschiedensten Projekten, wie zum Beispiel Deepfakes, Mixed Reality KI-Kunstwerken und autonom fliegenden Minidrohnen.